1
|
Teng D, Liu D, Khashaveh A, Lv B, Sun P, Geng T, Cui H, Wang Y, Zhang Y. Engineering DMNT emission in cotton enhances direct and indirect defense against mirid bugs. J Adv Res 2025; 71:29-41. [PMID: 38806097 DOI: 10.1016/j.jare.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION As an important herbivore-induced plant volatile, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is known for its defensive role against multiple insect pests, including attracting natural enemies. A terpene synthase (GhTPS14) and two cytochrome P450 (GhCYP82L1, GhCYP82L2) enzymes are involved in the de novo synthesis of DMNT in cotton. We conducted a study to test the potential of manipulating DMNT-synthesizing enzymes to enhance plant resistance to insects. OBJECTIVES To manipulate DMNT emissions in cotton and generate cotton lines with increased resistance to mirid bug Apolygus lucorum. METHODS Biosynthesis and emission of DMNT by cotton plants were altered using CRISPR/Cas9 and overexpression approaches. Dynamic headspace sampling and GC-MS analysis were used to collect, identify and quantify volatiles. The attractiveness and suitability of cotton lines against mirid bug and its parasitoid Peristenus spretus were evaluated through various assays. RESULTS No DMNT emission was detected in knockout CAS-L1L2 line, where both GhCYP82L1 and GhCYP82L2 were knocked out. In contrast, gene-overexpressed lines released higher amounts of DMNT when infested by A. lucorum. At the flowering stage, L114 (co-overexpressing GhCYP82L1 and GhTPS14) emitted 10-15-fold higher amounts than controls. DMNT emission in overexpressed transgenic lines could be triggered by methyl jasmonate (MeJA) treatment. Apolygus lucorum and its parasitoid were far less attracted to the double edited CAS-L1L2 plants, however, co-overexpressed line L114 significantly attracted bugs and female wasps. A high dose of DMNT, comparable to the emission of L114, significantly inhibited the growth of A. lucorum, and further resulted in higher mortalities. CONCLUSION Turning down DMNT emission attenuated the behavioral preferences of A. lucorum to cotton. Genetically modified cotton plants with elevated DMNT emission not only recruited parasitoids to enhance indirect defense, but also formed an ecological trap to kill the bugs. Therefore, manipulation of DMNT biosynthesis and emission in plants presents a promising strategy for controlling mirid bugs.
Collapse
Affiliation(s)
- Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Peiyao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Geng
- National Plant Protection Scientific Observation and Experiment Station, Langfang 065000, China
| | - Hongzhi Cui
- Biocentury Transgene (China) Co. Ltd., Shenzhen 518117, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Li C, Jiang P, Zhang J, Yang D, Lu L, Hao Z, Ma Y, Shi J, Chen J. Highly Efficient Homozygous CRISPR/Cas9 Gene Editing Based on Single-Cell-Originated Somatic Embryogenesis in Liriodendron tulipifera. PLANTS (BASEL, SWITZERLAND) 2025; 14:472. [PMID: 39943034 PMCID: PMC11820044 DOI: 10.3390/plants14030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
The clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is the most widely used gene-editing tool to date. However, its application in the genetic improvement of forestry trees has been largely limited. Here, we first established a highly efficient multi-target editing system in the magnoliid woody plant Liriodendron tulipifera. Using phytoene desaturase gene (PDS) as an example, we systematically compared CRISPR/Cas9 and CRSPR/Cpf1 expression systems for loss-of-function analysis and conducted genetic transformations using transient and stable transformation. Ultimately, our findings indicated that the CRISPR/Cas9 system, when applied to transformation based on single-cell-originated somatic embryogenesis, yielded the highest gene-editing efficiency, with mutation rates of nearly 100%. Furthermore, we obtained a total of 137 regeneration plantlets via somatic embryogenesis, of which 82.48% exhibited an albino phenotype. The Illumina sequencing results of albino seedlings and the callus tissue obtained from dedifferentiation of mutant plants revealed that the mutation at the T1 target site was homozygous. These results indicate that CRISPR/Cas9-based multiplex genome-editing technology can not only accelerate the identification of gene function but also be incorporated into the genetic improvement and breeding of tulip trees, supporting the scale propagation of genome-edited plantlets via somatic embryogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (C.L.); (P.J.); (J.Z.); (D.Y.); (L.L.); (Z.H.); (Y.M.)
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (C.L.); (P.J.); (J.Z.); (D.Y.); (L.L.); (Z.H.); (Y.M.)
| |
Collapse
|
3
|
Yang Z, Zhang Z, Qiao Z, Guo X, Wen Y, Zhou Y, Yao C, Fan H, Wang B, Han G. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:787-809. [PMID: 38477645 DOI: 10.1111/jipb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
Collapse
Affiliation(s)
- Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziwei Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingxue Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Chunliang Yao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, 257000, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| |
Collapse
|
4
|
Zhang Y, Lin XF, Li L, Piao RH, Wu S, Song A, Gao M, Jin YM. CRISPR/Cas9-mediated knockout of Bsr-d1 enhances the blast resistance of rice in Northeast China. PLANT CELL REPORTS 2024; 43:100. [PMID: 38498220 DOI: 10.1007/s00299-024-03192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.
Collapse
Affiliation(s)
- Ying Zhang
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Xiu-Feng Lin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
| | - Li Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management On Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, 136100, People's Republic of China
| | - Ri-Hua Piao
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Songquan Wu
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Anqi Song
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Mengmeng Gao
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Yong-Mei Jin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China.
| |
Collapse
|
5
|
Sang S, Wang Y, Yao G, Ma T, Sun X, Zhang Y, Su N, Tan X, Abbas HMK, Ji S, Zaman QU. A Critical Review of Conventional and Modern Approaches to Develop Herbicide-Resistance in Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14254. [PMID: 38499939 DOI: 10.1111/ppl.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.
Collapse
Affiliation(s)
- Shifei Sang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yanan Wang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Guoqin Yao
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Tengyun Ma
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaohan Sun
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yijing Zhang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Nan Su
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agricultural and Forestry, Jiangsu Province, P. R. China
| | | | - Shengdong Ji
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
- College of Tropical Crops and Forestry, Hainan University, Haikou, China
| |
Collapse
|
6
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
7
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
9
|
Zhou J, Luan X, Liu Y, Wang L, Wang J, Yang S, Liu S, Zhang J, Liu H, Yao D. Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene Editing in Plant Molecular Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1478. [PMID: 37050104 PMCID: PMC10097296 DOI: 10.3390/plants12071478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Following recent developments and refinement, CRISPR-Cas9 gene-editing technology has become increasingly mature and is being widely used for crop improvement. The application of CRISPR/Cas9 enables the generation of transgene-free genome-edited plants in a short period and has the advantages of simplicity, high efficiency, high specificity, and low production costs, which greatly facilitate the study of gene functions. In plant molecular breeding, the gene-editing efficiency of the CRISPR-Cas9 system has proven to be a key step in influencing the effectiveness of molecular breeding, with improvements in gene-editing efficiency recently becoming a focus of reported scientific research. This review details strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding, including Cas9 variant enzyme engineering, the effect of multiple promoter driven Cas9, and gRNA efficient optimization and expression strategies. It also briefly introduces the optimization strategies of the CRISPR/Cas12a system and the application of BE and PE precision editing. These strategies are beneficial for the further development and optimization of gene editing systems in the field of plant molecular breeding.
Collapse
Affiliation(s)
- Junming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Songnan Yang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| |
Collapse
|
10
|
Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M. Evolution of the WRKY66 Gene Family and Its Mutations Generated by the CRISPR/Cas9 System Increase the Sensitivity to Salt Stress in Arabidopsis. Int J Mol Sci 2023; 24:3071. [PMID: 36834483 PMCID: PMC9959582 DOI: 10.3390/ijms24043071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.
Collapse
Affiliation(s)
- Youze Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
11
|
Kong X, Pan W, Zhang T, Liu L, Zhang H. A simple and efficient strategy to produce transgene-free gene edited plants in one generation using paraquat resistant 1 as a selection marker. FRONTIERS IN PLANT SCIENCE 2023; 13:1051991. [PMID: 36733591 PMCID: PMC9888365 DOI: 10.3389/fpls.2022.1051991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION DNA integration is a key factor limiting the marketing of CRISPR/Cas9-mediated gene edited crops. Several strategies have been established to obtain transgene-free gene edited plants; however, these strategies are usually time-consuming, technically difficult, providing low mutagenesis efficiency, and/or including a narrow host range. METHOD To overcome such issues, we established a paraquat resistant 1 (PAR1)-based positive screening (PARS) strategy, which achieved efficient screening of transgene-free gene edited plants. RESULTS With PARS, the screening efficiency of mutant increased by 2.81-fold on average, and approximately 10% of T1 plants selected via PARS were transgenefree. Moreover, heritable transgene-free mutations at target loci were identified in the T1 generation. DISCUSSION Based on the previous reports and our data, we know that paraquat is toxic to all green plants, PAR1 is conserved among all plant species tested, and the transient expression of Cas9 editor can produce transgene-free gene edited plants. Thus, we assume that the PARS strategy established here has the potential to be widely used to screen transgene-free mutants in various crops using diverse CRISPR/Cas9 delivery approaches.
Collapse
Affiliation(s)
- Xiangjiu Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenbo Pan
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| | - Tingyu Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| |
Collapse
|
12
|
Goldsmith M, Barad S, Knafo M, Savidor A, Ben-Dor S, Brandis A, Mehlman T, Peleg Y, Albeck S, Dym O, Ben-Zeev E, Barbole RS, Aharoni A, Reich Z. Identification and characterization of the key enzyme in the biosynthesis of the neurotoxin β-ODAP in grass pea. J Biol Chem 2022; 298:101806. [PMID: 35271851 PMCID: PMC9061259 DOI: 10.1016/j.jbc.2022.101806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme—β-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way toward engineering β-ODAP–free grass pea cultivars, which are safe for human and animal consumption.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shiri Barad
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maor Knafo
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Savidor
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander Brandis
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tevie Mehlman
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoav Peleg
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shira Albeck
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orly Dym
- Dept. of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Ben-Zeev
- Medicinal Chemistry Unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit S Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel; Plant Molecular Biology Unit, Division of Biochemical Sciences, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Reich
- Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
13
|
Zhang B, Wang H, Zhao W, Shan C, Liu C, Gao L, Zhao R, Ao P, Xiao P, Lv L, Gao H. New insights into the construction of wild-type Saba pig-derived Escherichia coli irp2 gene deletion strains. 3 Biotech 2021; 11:408. [PMID: 34466347 PMCID: PMC8363713 DOI: 10.1007/s13205-021-02951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
To construct wild-type E. coli irp2 gene deletion strains, CRISPR/Cas9 gene editing technology was used, and the difficulty and key points of gene editing of wild-type strains were analyzed. Based on the resistance of the CRISPR/Cas9 system expression vector, 4 strains of 41 E. coli strains isolated from Saba pigs were selected as the target strains for the deletion of the irp2 gene, which were sensitive to both ampicillin and kanamycin. Then, CRISPR/Cas9 technology was combined with homologous recombination technology to construct recombinant vectors containing Cas9, sgRNA and donor sequences to knock out the irp2 gene. Finally, the absence of the irp2 gene in E. coli was further verified by iron uptake assays, iron carrier production assays and growth curve measurements. The results showed that three of the selected strains showed single base mutations and deletions (Δirp2-1, Δirp2-2 and Δirp2-3). The deletion of the irp2 gene reduced the ability of E. coli to take up iron ions and produce iron carriers, but not affect the growth characteristics of E. coli. It is shown that the CRISPR/Cas9 knock-out system constructed in this study can successfully knock out the irp2 gene of the wild-type E. coli. Our results providing new insights into genome editing in wild-type strains, which enable further functional studies of the irp2 gene in wild-type E. coli.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Hongdan Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Weiwei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chaoying Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Libo Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Pingxing Ao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Longbao Lv
- Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| |
Collapse
|
14
|
Li P, Li X, Jiang M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Mol Biol Rep 2021; 48:5821-5832. [PMID: 34351541 DOI: 10.1007/s11033-021-06541-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND WRKY transcription factor is involved in regulation of plant growth and development, response to biotic and abiotic stresses, including homologous WRKY3 and WRKY4 genes which play a vital role in regulating plants defense response to pathogen and drought stress. METHODS AND RESULTS To investigate the function of AtWRKY3 and AtWRKY4 genes in regulating salt and Me-JA stresses, the loss-of-function mutations were generated by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system in Arabidopsis thaliana. Several independent transgenic lines with single or double mutations were obtained via Agrobacterium-mediated transformation. The knockout lines of AtWRKY3 and AtWRKY4 genes were successfully achieved and confirmed by qRT-PCR technology. Expression analysis showed that AtWRKY3 and AtWRKY4 genes had significantly up-regulated under salt and Me-JA stresses. The growth of double mutant plants under salt or Me-JA stresses were significantly inhibited compared with corresponding wild type (WT) plants, especially their root lengths. Moreover, the double mutant plants displayed salt and Me-JA sensitivity phenotypic characteristics, such as the increased relative electrolyte leakage (REL) and a substantial reduce in the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities. CONCLUSION Taken together, these data suggested that the simultaneous modification of homologous gene copies of WRKY are established using CRISPR/Cas9 system in A. thaliana and the loss of AtWRKY3 and AtWRKY4 has an effect on ROS scavenging pathways to reduce stress tolerance.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xiwen Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
15
|
Zhang H, Li J, Zhao S, Yan X, Si N, Gao H, Li Y, Zhai S, Xiao F, Wu G, Wu Y. An Editing-Site-Specific PCR Method for Detection and Quantification of CAO1-Edited Rice. Foods 2021; 10:foods10061209. [PMID: 34071965 PMCID: PMC8226746 DOI: 10.3390/foods10061209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Genome-edited plants created by genome editing technology have been approved for commercialization. Due to molecular characteristics that differ from classic genetically modified organisms (GMOs), establishing regulation-compliant analytical methods for identification and quantification of genome-edited plants has always been regarded as a challenging task. An editing-site-specific PCR method was developed based on the unique edited sequence in CAO1-edited rice plants. Test results of seven primer/probe sets indicated that this method can identify specific CAO1-edited rice from other CAO1-edited rice and wild types of rice with high specificity and sensitivity. The use of LNA (locked nucleic acid) in a probe can efficiently increase the specificity of the editing-site-specific PCR method at increased annealing temperature which can eliminate non-specific amplification of the non-target. The genome-edited ingredient content in blinded samples at the level of 0.1% to 5.0% was accurately quantified by this method on the ddPCR platform with RSD of <15% and bias in the range of ±17%, meeting the performance requirements for GMO detection method. The developed editing-site-specific PCR method presents a promising detection and quantification technique for genome-edited plants with known edited sequence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuhua Wu
- Correspondence: ; Tel.: +86-27-86711573
| |
Collapse
|
16
|
Piergentili R, Del Rio A, Signore F, Umani Ronchi F, Marinelli E, Zaami S. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues. Cells 2021; 10:cells10050969. [PMID: 33919194 PMCID: PMC8143109 DOI: 10.3390/cells10050969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The CRISPR-Cas system is a powerful tool for in vivo editing the genome of most organisms, including man. During the years this technique has been applied in several fields, such as agriculture for crop upgrade and breeding including the creation of allergy-free foods, for eradicating pests, for the improvement of animal breeds, in the industry of bio-fuels and it can even be used as a basis for a cell-based recording apparatus. Possible applications in human health include the making of new medicines through the creation of genetically modified organisms, the treatment of viral infections, the control of pathogens, applications in clinical diagnostics and the cure of human genetic diseases, either caused by somatic (e.g., cancer) or inherited (mendelian disorders) mutations. One of the most divisive, possible uses of this system is the modification of human embryos, for the purpose of preventing or curing a human being before birth. However, the technology in this field is evolving faster than regulations and several concerns are raised by its enormous yet controversial potential. In this scenario, appropriate laws need to be issued and ethical guidelines must be developed, in order to properly assess advantages as well as risks of this approach. In this review, we summarize the potential of these genome editing techniques and their applications in human embryo treatment. We will analyze CRISPR-Cas limitations and the possible genome damage caused in the treated embryo. Finally, we will discuss how all this impacts the law, ethics and common sense.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Alessandro Del Rio
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
- Correspondence: or
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Federica Umani Ronchi
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Enrico Marinelli
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| |
Collapse
|
17
|
|
18
|
Sorge E, Demidov D, Lermontova I, Houben A, Conrad U. Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants. PLoS One 2021; 16:e0247015. [PMID: 33577589 PMCID: PMC7880479 DOI: 10.1371/journal.pone.0247015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/30/2021] [Indexed: 01/12/2023] Open
Abstract
Determining the function of proteins remains a key task of modern biology. Classical genetic approaches to knocking out protein function in plants still face limitations, such as the time-consuming nature of generating homozygous transgenic lines or the risk of non-viable loss-of-function phenotypes. We aimed to overcome these limitations by acting downstream of the protein level. Chimeric E3 ligases degrade proteins of interest in mammalian cell lines, Drosophila melanogaster embryos, and transgenic tobacco. We successfully recruited the 26S proteasome pathway to directly degrade a protein of interest located in plant nuclei. This success was achieved via replacement of the interaction domain of the E3 ligase adaptor protein SPOP (Speckle-type POZ adapter protein) with a specific anti-GFP nanobody (VHHGFP4). For proof of concept, the target protein CENH3 of A. thaliana fused to EYFP was subjected to nanobody-guided proteasomal degradation in planta. Our results show the potential of the modified E3-ligase adapter protein VHHGFP4-SPOP in this respect. We were able to point out its capability for nucleus-specific protein degradation in plants.
Collapse
Affiliation(s)
- Eberhard Sorge
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Dmitri Demidov
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ, Czech Republic
| | - Andreas Houben
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
19
|
Gentzel IN, Park CH, Bellizzi M, Xiao G, Gadhave KR, Murphree C, Yang Q, LaMantia J, Redinbaugh MG, Balint-Kurti P, Sit TL, Wang GL. A CRISPR/dCas9 toolkit for functional analysis of maize genes. PLANT METHODS 2020; 16:133. [PMID: 33024447 PMCID: PMC7532566 DOI: 10.1186/s13007-020-00675-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/24/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has become a powerful tool for functional genomics in plants. The RNA-guided nuclease can be used to not only generate precise genomic mutations, but also to manipulate gene expression when present as a deactivated protein (dCas9). RESULTS In this study, we describe a vector toolkit for analyzing dCas9-mediated activation (CRISPRa) or inactivation (CRISPRi) of gene expression in maize protoplasts. An improved maize protoplast isolation and transfection method is presented, as well as a description of dCas9 vectors to enhance or repress maize gene expression. CONCLUSIONS We anticipate that this maize protoplast toolkit will streamline the analysis of gRNA candidates and facilitate genetic studies of important trait genes in this transformation-recalcitrant plant.
Collapse
Affiliation(s)
- Irene N. Gentzel
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Chan Ho Park
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Maria Bellizzi
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Guiqing Xiao
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Kiran R. Gadhave
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Colin Murphree
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Qin Yang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Jonathan LaMantia
- Corn, Soybean and Wheat Quality Research Unit, USDA-ARS, Wooster, OH 44691 USA
| | - Margaret G. Redinbaugh
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
- Corn, Soybean and Wheat Quality Research Unit, USDA-ARS, Wooster, OH 44691 USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Tim L. Sit
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, 483B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 USA
| |
Collapse
|
20
|
Wolabu TW, Park JJ, Chen M, Cong L, Ge Y, Jiang Q, Debnath S, Li G, Wen J, Wang Z. Improving the genome editing efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. PLANTA 2020; 252:15. [PMID: 32642859 PMCID: PMC7343739 DOI: 10.1007/s00425-020-03415-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION An improved CRISPR/Cas9 system with the Arabidopsis UBQ10 promoter-driven Cas9 exhibits consistently high mutation efficiency in Arabidopsis and M. truncatula. CRISPR/Cas9 is a powerful genome editing technology that has been applied in several crop species for trait improvement due to its simplicity, versatility, and specificity. However, the mutation efficiency of CRISPR/Cas9 in Arabidopsis and M. truncatula (Mt) is still challenging and inconsistent. To analyze the functionality of the CRISPR/Cas9 system in two model dicot species, four different promoter-driven Cas9 systems to target phytoene desaturase (PDS) genes were designed. Agrobacterium-mediated transformation was used for the delivery of constructed vectors to host plants. Phenotypic and genotypic analyses revealed that the Arabidopsis UBQ10 promoter-driven Cas9 significantly improves the mutation efficiency to 95% in Arabidopsis and 70% in M. truncatula. Moreover, the UBQ10-Cas9 system yielded 11% homozygous mutants in the T1 generation in Arabidopsis. Sequencing analyses of mutation events indicated that single-nucleotide insertions are the most frequent events in Arabidopsis, whereas multi-nucleotide deletions are dominant in bi-allelic and mono-allelic homozygous mutants in M. truncatula. Taken together, the UBQ10 promoter facilitates the best improvement in the CRISPR/Cas9 efficiency in PDS gene editing, followed by the EC1.2 promoter. Consistently, the improved UBQ10-Cas9 vector highly enhanced the mutation efficiency by four-fold over the commonly used 35S promoter in both dicot species.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jong-Jin Park
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Genome Editing Naturegenic Inc, 1281 Win Hentschel Boulevard, Kurz Purdue Technology Center Suite E-1251, West Lafayette, IN, 47906, USA
| | - Miao Chen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Guang Dong Ocean University, Faculty of Agricultural Science, #1 Haida Road, Mazhang, Zhanjiang, 524088, Guangdong, China
| | - Lili Cong
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- College of Grassland Science, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong Province, China
| | - Yaxin Ge
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Qingzhen Jiang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| | - Zengyu Wang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
- College of Grassland Science, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong Province, China.
| |
Collapse
|
21
|
Chen L, Zhang H, Zhang L, Li W, Fan F, Wu X, Wu X, Lin J. Cas9 Protein Triggers Differential Expression of Inherent Genes Especially NGFR Expression in 293T Cells. Cell Mol Bioeng 2020; 13:61-72. [PMID: 32030108 DOI: 10.1007/s12195-019-00606-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction CRISPR/CAS9 systems, which can be utilized in vitro biological experiments, have recently captured much attention for their important roles and benefits. However, full realization of the potential of CRISPR/CAS9 approaches requires addressing many challenges and side effects. The expression of genes and potential side effects of CRISPR/CAS9 in human cells remains to be elucidated. The aim of our study was to explore the effect of CRISPR/CAS9 on gene expression in 293T cells. Methods A Cas9-expressing PX458 plasmid and Cas9-deactivated PX458-T2A plasmid were used to study the role of CRISPR/CAS9 on regulating gene expression in 293T cells. Gene expression in 293T cells after transfection of the PX458 plasmid or PX458-T2A plasmid was detected by RNA sequencing and correlative statistical analysis. Differential gene expression in both PX458 transfected 293T cells and PX458-T2A transfected 293T cells compared with normal 293T cells was detected using quantitative reverse transcription polymerase chain reaction (RT qPCR). The mRNA and protein levels were measured using reverse transcription PCR and Western blot. Co-IP assay combined with shotgun LC-MS/MS were used to investigate the differences of NGFR-interaction proteins between PX458 transfected 293T cells and PX458-T2A transfected 293T cells. Results In this study, we observed that PX458 plasmid transfection and Cas9 expression can affect the expression of different genes, including FOSB (FBJ murine osteosarcoma viral oncogene homolog B), IL-11 (Interleukin-11), MMP1 (matrix metalloproteinase), CYP2D6 (CytochromeP4502D6), and NGFR (matrix metalloproteinase 1). Downregulation of NGFR after PX458 transfection was confirmed by RT qPCR and western blot analysis. NGFR expression was significantly lower in PX458 transfected 293T cells than in normal 293T cells and PX458-T2A transfected 293T cells. The co-IP dilutions analyzed by shotgun LC-MS/MS showed a total of 183 proteins interact with NGFR in PX458 transfected 293T cells while 221 proteins interact with NGFR were identified in PX458-T2A transfected 293T cells using the MASCOT engine. Conclusions Cas9 expression by transfection of the PX458 plasmid was negatively correlated with the NGFR mRNA level and NGFR protein expression in 293T cells, while PX458-T2A, in which Cas9 is deactivated, did not affect NGFR expression. The decrease in NGFR expression also affects the amount of proteins that interact with NGFR. These results suggest that the effect of Cas9 on NGFR expression and the expression of other genes should be noticed when developing cell-based studies and therapies utilizing CRISPR/CAS9 systems.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Huilian Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Linteng Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Wenbo Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Fengtian Fan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Xiaoyun Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Xueling Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China
| | - Jun Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China.,Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108 China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
22
|
Gionfriddo M, De Gara L, Loreto F. Directed Evolution of Plant Processes: Towards a Green (r)Evolution? TRENDS IN PLANT SCIENCE 2019; 24:999-1007. [PMID: 31604600 DOI: 10.1016/j.tplants.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable properties are generated and selected. We propose that combining DE and genome-editing (DE-GE) technologies represents a powerful tool to discover and integrate new traits into plants for agronomic and biotechnological gain. DE-GE has the potential to deliver a new green (r)evolution research platform that can provide novel solutions to major trait delivery aspirations for sustainable agriculture, climate-resilient crops, and improved food security and nutritional quality.
Collapse
Affiliation(s)
- Matteo Gionfriddo
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Department of Biology, University Federico II, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
23
|
Yun JY, Kim ST, Kim SG, Kim JS. A zero-background CRISPR binary vector system for construction of sgRNA libraries in plant functional genomics applications. PLANT BIOTECHNOLOGY REPORTS 2019; 13:543-551. [DOI: 10.1007/s11816-019-00567-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 08/30/2023]
|
24
|
Zhang S, Zhang R, Gao J, Gu T, Song G, Li W, Li D, Li Y, Li G. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium
tumefaciens-Mediated CRISPR/Cas9 System. Int J Mol Sci 2019; 20:E4257. [PMID: 31480315 PMCID: PMC6747105 DOI: 10.3390/ijms20174257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
The CRISPR/Cas9 system has been successfully used in hexaploid wheat. Although it has been reported that the induced mutations can be passed to the next generation, gene editing and transmission patterns in later generations still need to be studied. In this study, we demonstrated that the CRISPR/Cas9 system could achieve efficient mutagenesis in five wheat genes via Agrobacterium-mediated transformation of an sgRNA targeting the D genome, an sgRNA targeting both the A and B homologues and three tri-genome guides targeting the editing of all three homologues. High mutation rates and putative homozygous or biallelic mutations were observed in the T0 plants. The targeted mutations could be stably inherited by the next generation, and the editing efficiency of each mutant line increased significantly across generations. The editing types and inheritance of targeted mutagenesis were similar, which were not related to the targeted subgenome number. The presence of Cas9/sgRNA could cause new mutations in subsequent generations, while mutated lines without Cas9/sgRNA could retain the mutation type. Additionally, off-target mutations were not found in sequences that were highly homologous to the selected sgRNA sequences. Overall, the results suggested that CRISPR/Cas9-induced gene editing via Agrobacterium-mediated transformation plays important roles in wheat genome engineering.
Collapse
Affiliation(s)
- Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Jie Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Tiantian Gu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Guoqi Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Dandan Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China.
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China.
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, Shandong, China.
- National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China.
| |
Collapse
|
25
|
Ahmad N, Rahman M, Mukhtar Z, Zafar Y, Zhang B. A critical look on CRISPR‐based genome editing in plants. J Cell Physiol 2019; 235:666-682. [DOI: 10.1002/jcp.29052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/12/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Mehboob‐ur Rahman
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Yusuf Zafar
- Pakistan Agriculture Research Council Islamabad Pakistan
| | - Baohong Zhang
- Department of Biology East Carolina University Greenville North Caroline
| |
Collapse
|
26
|
Ruz M, Solomons NW. A Vision for Nutritional Research for the Latin American Region. Food Nutr Bull 2019; 40:14-25. [PMID: 30827120 DOI: 10.1177/0379572119832780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Manuel Ruz
- 1 Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Noel W Solomons
- 2 Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| |
Collapse
|
27
|
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018; 25:1234-1257. [PMID: 29801422 PMCID: PMC6058482 DOI: 10.1080/10717544.2018.1474964] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Gene therapy has long held promise to correct a variety of human diseases and defects. Discovery of the Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR), the mechanism of the CRISPR-based prokaryotic adaptive immune system (CRISPR-associated system, Cas), and its repurposing into a potent gene editing tool has revolutionized the field of molecular biology and generated excitement for new and improved gene therapies. Additionally, the simplicity and flexibility of the CRISPR/Cas9 site-specific nuclease system has led to its widespread use in many biological research areas including development of model cell lines, discovering mechanisms of disease, identifying disease targets, development of transgene animals and plants, and transcriptional modulation. In this review, we present the brief history and basic mechanisms of the CRISPR/Cas9 system and its predecessors (ZFNs and TALENs), lessons learned from past human gene therapy efforts, and recent modifications of CRISPR/Cas9 to provide functions beyond gene editing. We introduce several factors that influence CRISPR/Cas9 efficacy which must be addressed before effective in vivo human gene therapy can be realized. The focus then turns to the most difficult barrier to potential in vivo use of CRISPR/Cas9, delivery. We detail the various cargos and delivery vehicles reported for CRISPR/Cas9, including physical delivery methods (e.g. microinjection; electroporation), viral delivery methods (e.g. adeno-associated virus (AAV); full-sized adenovirus and lentivirus), and non-viral delivery methods (e.g. liposomes; polyplexes; gold particles), and discuss their relative merits. We also examine several technologies that, while not currently reported for CRISPR/Cas9 delivery, appear to have promise in this field. The therapeutic potential of CRISPR/Cas9 is vast and will only increase as the technology and its delivery improves.
Collapse
Affiliation(s)
- Christopher A. Lino
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jason C. Harper
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - James P. Carney
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jerilyn A. Timlin
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, USA
| |
Collapse
|
28
|
Genetic manipulations in crops: Challenges and opportunities. Genomics 2017; 109:494-505. [PMID: 28778540 DOI: 10.1016/j.ygeno.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
An alarming increase in the human population necessitates doubling the world food production in the next few decades. Although a number of possible biotechnological measures are under consideration, central to these efforts is the development of transgenic crops to produce more food, and the traits with which plants could better adapt to adverse environmental conditions in a changing climate. The emergence of new tools for the introduction of foreign genes into plants has increased both our knowledge and the capacity to develop transgenic plants. In addition, a better understanding of genetic modifications has allowed us to study the impact that genetically modified crop plants may have on the environment. This article discusses different techniques routinely used to carry out genetic modifications in plants while highlighting challenges with them, which future research must address to increase acceptance of GM crops for meeting food security challenges effectively.
Collapse
|