1
|
Hu C, Yan Y, Jin Y, Yang J, Xi Y, Zhong Z. Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases. Neurosci Bull 2024; 40:241-254. [PMID: 37755677 PMCID: PMC10838874 DOI: 10.1007/s12264-023-01115-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/02/2023] [Indexed: 09/28/2023] Open
Abstract
The accumulation and spread of prion-like proteins is a key feature of neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, or Amyotrophic Lateral Sclerosis. In a process known as 'seeding', prion-like proteins such as amyloid beta, microtubule-associated protein tau, α-synuclein, silence superoxide dismutase 1, or transactive response DNA-binding protein 43 kDa, propagate their misfolded conformations by transforming their respective soluble monomers into fibrils. Cellular and molecular evidence of prion-like propagation in NDs, the clinical relevance of their 'seeding' capacities, and their levels of contribution towards disease progression have been intensively studied over recent years. This review unpacks the cyclic prion-like propagation in cells including factors of aggregate internalization, endo-lysosomal leaking, aggregate degradation, and secretion. Debates on the importance of the role of prion-like protein aggregates in NDs, whether causal or consequent, are also discussed. Applications lead to a greater understanding of ND pathogenesis and increased potential for therapeutic strategies.
Collapse
Affiliation(s)
- Chenjun Hu
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqun Yan
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yanhong Jin
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Yang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhen Zhong
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Actis GC, Pellicano R, Fagoonee S, Ribaldone DG. COVID-19 and the enteric system: rapidly propagating issues. Minerva Med 2023; 114:217-223. [PMID: 35315634 DOI: 10.23736/s0026-4806.22.08077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The newly described SARS-CoV-2 respiratory virus is now righteously presenting as an ominous threat, based on the speed with which it originated a zoonosis from bats; advancing at a similar rate, the virus has placed mankind before a pandemic, with an infection toll of some 431 million, and a lethality of 5,9 million (as of February 25, 2022). The size of the harm that this agent can unleash against us is appallingly wide, from brain ischemia to foot chilblain, passing by heart massive infarction. Designing a possible response, we reappraised the well-known equation depression-inflammation, and tested the hypothesis that an upgraded ease-of-mind might help reduce the host's hospitality towards SARS-CoV-2. With time passing, it becomes increasingly evident that the virus shall tend to progressively occupy spaces, replacing pandemics with an apparently calm endemicity. This will have to be avoided, and surveillance of society on psychological terms will be one tenet. Needless to say, the role of the enteric tract in these issues is growing higher, and it will be narrated to seal the matters with the last (not the least) touch of glue.
Collapse
Affiliation(s)
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Davide G Ribaldone
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
3
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Legname G, Scialò C. On the role of the cellular prion protein in the uptake and signaling of pathological aggregates in neurodegenerative diseases. Prion 2021; 14:257-270. [PMID: 33345731 PMCID: PMC7757855 DOI: 10.1080/19336896.2020.1854034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative disorders are associated with intra- or extra-cellular deposition of aggregates of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Novel evidence suggests that the circulating soluble oligomeric species of these misfolded proteins could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Recent convincing data support the proposition that the cellular prion protein, PrPC, act as a toxicity-inducing receptor for amyloid-β oligomers. As a consequence, several studies focused their investigations to the role played by PrPC in binding other protein aggregates, such as tau and α-synuclein, for its possible common role in mediating toxic signalling. The biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, could lead to relevant therapeutic implications. Here we describe the structure of PrPC and the proposed interplay with its pathological counterpart PrPSc and then we recapitulate the most recent findings regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Carlo Scialò
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
5
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
6
|
Scialò C, Legname G. The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:297-323. [PMID: 32958237 DOI: 10.1016/bs.pmbts.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-β oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aβ, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
7
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
9
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|