1
|
Bai L, Wang K, Liu D, Wu S. Potential Early Effect Biomarkers for Ambient Air Pollution Related Mental Disorders. TOXICS 2024; 12:454. [PMID: 39058106 PMCID: PMC11280925 DOI: 10.3390/toxics12070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Air pollution is one of the greatest environmental risks to health, with 99% of the world's population living where the World Health Organization's air quality guidelines were not met. In addition to the respiratory and cardiovascular systems, the brain is another potential target of air pollution. Population- and experiment-based studies have shown that air pollution may affect mental health through direct or indirect biological pathways. The evidence for mental hazards associated with air pollution has been well documented. However, previous reviews mainly focused on epidemiological associations of air pollution with some specific mental disorders or possible biological mechanisms. A systematic review is absent for early effect biomarkers for characterizing mental health hazards associated with ambient air pollution, which can be used for early warning of related mental disorders and identifying susceptible populations at high risk. This review summarizes possible biomarkers involved in oxidative stress, inflammation, and epigenetic changes linking air pollution and mental disorders, as well as genetic susceptibility biomarkers. These biomarkers may provide a better understanding of air pollution's adverse effects on mental disorders and provide future research direction in this arena.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Dandan Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| |
Collapse
|
2
|
Peedicayil J. Genome-Environment Interactions and Psychiatric Disorders. Biomedicines 2023; 11:biomedicines11041209. [PMID: 37189827 DOI: 10.3390/biomedicines11041209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Environmental factors are known to interact with the genome by altering epigenetic mechanisms regulating gene expression and contributing to the pathogenesis of psychiatric disorders. This article is a narrative review of how the major environmental factors contribute to the pathogenesis of common psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorder this way. The cited articles were published between 1 January 2000 and 31 December 2022 and were obtained from PubMed and Google Scholar. The search terms used were as follows: gene or genetic; genome; environment; mental or psychiatric disorder; epigenetic; and interaction. The following environmental factors were found to act epigenetically on the genome to influence the pathogenesis of psychiatric disorders: social determinants of mental health, maternal prenatal psychological stress, poverty, migration, urban dwelling, pregnancy and birth complications, alcohol and substance abuse, microbiota, and prenatal and postnatal infections. The article also discusses the ways by which factors such as drugs, psychotherapy, electroconvulsive therapy, and physical exercise act epigenetically to alleviate the symptoms of psychiatric disorders in affected patients. These data will be useful information for clinical psychiatrists and those researching the pathogenesis and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore 632 002, India
| |
Collapse
|
3
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
4
|
Loureiro CM, Fachim HA, Harte MK, Dalton CF, Reynolds GP. Subchronic PCP effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol 2022; 36:238-244. [PMID: 35102781 DOI: 10.1177/02698811211069109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is implicated in schizophrenia, and NMDAR antagonists, such as phencyclidine (PCP), can induce behaviours that mimic aspects of the disorder. AIMS We investigated DNA methylation of Grin1, Grin2a and Grin2b promoter region and NR1 and NR2 protein expression in the prefrontal cortex (PFC) and hippocampus of adult female Lister-hooded rats following subchronic PCP (scPCP) administration. We also determined whether any alterations were tissue-specific. METHODS Rats were divided into two groups that received vehicle (0.9% saline) or 2 mg/kg PCP twice a day for 7 days (n = 10 per group). After behavioural testing (novel object recognition), to confirm a cognitive deficit, brains were dissected and NMDAR subunit DNA methylation and protein expression were analysed by pyrosequencing and ELISA. Line-1 methylation was determined as a measure of global methylation. Data were analysed using Student's t-test and Pearson correlation. RESULTS The scPCP administration led to Grin1 and Grin2b hypermethylation and reduction in NR1 protein in both PFC and hippocampus. No significant differences were observed in Line-1 or Grin2a methylation and NR2 protein. CONCLUSIONS The scPCP treatment resulted in increased DNA methylation at promoter sites of Grin1 and Grin2b NMDAR subunits in two brain areas implicated in schizophrenia, independent of any global change in DNA methylation, and are similar to our observations in a neurodevelopmental animal model of schizophrenia - social isolation rearing post-weaning. Moreover, these alterations may contribute to the changes in protein expression for NMDAR subunits demonstrating the potential importance of epigenetic mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Camila M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene A Fachim
- Department of Endocrinology and Metabolism, Salford Royal Foundation Trust, Salford, UK
| | - Michael K Harte
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
5
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
6
|
Srancikova A, Bacova Z, Bakos J. The epigenetic regulation of synaptic genes contributes to the etiology of autism. Rev Neurosci 2021; 32:791-802. [PMID: 33939901 DOI: 10.1515/revneuro-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms greatly affect the developing brain, as well as the maturation of synapses with pervasive, long-lasting consequences on behavior in adults. Substantial evidence exists that implicates dysregulation of epigenetic mechanisms in the etiology of neurodevelopmental disorders. Therefore, this review explains the role of enzymes involved in DNA methylation and demethylation in neurodevelopment by emphasizing changes of synaptic genes and proteins. Epigenetic causes of sex-dependent differences in the brain are analyzed in conjunction with the pathophysiology of autism spectrum disorders. Special attention is devoted to the epigenetic regulation of the melanoma-associated antigen-like gene 2 (MAGEL2) found in Prader-Willi syndrome, which is known to be accompanied by autistic symptoms.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Richetto J, Meyer U. Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biol Psychiatry 2021; 89:215-226. [PMID: 32381277 DOI: 10.1016/j.biopsych.2020.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic modifications are increasingly recognized to play a role in the etiology and pathophysiology of schizophrenia and other psychiatric disorders with developmental origins. Here, we summarize clinical and preclinical findings of epigenetic alterations in schizophrenia and relevant disease models and discuss their putative origin. Recent findings suggest that certain schizophrenia risk loci can influence stochastic variation in gene expression through epigenetic processes, highlighting the intricate interaction between genetic and epigenetic control of neurodevelopmental trajectories. In addition, a substantial portion of epigenetic alterations in schizophrenia and related disorders may be acquired through environmental factors and may be manifested as molecular "scars." Some of these scars can influence brain functions throughout the entire lifespan and may even be transmitted across generations via epigenetic germline inheritance. Epigenetic modifications, whether caused by genetic or environmental factors, are plausible molecular sources of phenotypic heterogeneity and offer a target for therapeutic interventions. The further elucidation of epigenetic modifications thus may increase our knowledge regarding schizophrenia's heterogeneous etiology and pathophysiology and, in the long term, may advance personalized treatments through the use of biomarker-guided epigenetic interventions.
Collapse
Affiliation(s)
- Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Hao K, Su X, Luo B, Cai Y, Chen T, Yang Y, Shao M, Song M, Zhang L, Zhong Z, Li W, Lv L. Prenatal immune activation induces age-related alterations in rat offspring: Effects upon NMDA receptors and behaviors. Behav Brain Res 2019; 370:111946. [PMID: 31112730 DOI: 10.1016/j.bbr.2019.111946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to polyriboinosinic-polyribocytidylic acid (poly I:C) results in psychotic-like behavior in mature rat offspring as well as enduring modifications of glutamatergic excitatory synaptic transmission. However, little is known about the dynamic behavioral and glutamate N-methyl-D-aspartate (NMDA) receptor changes in rat offspring following poly I:C treatment of pregnant dams. In this study, poly I:C was administered to rats intravenously at a dose of 10 mg/kg on gestational day 9 in order to assess changes in behavior and NMDA receptors in offspring over time. Results demonstrate progressive worsening behaviors in adolescents and adults that manifest as increased anxiety, cognitive impairment, and pre-pulse inhibition deficits. Age-related alteration of NMDA receptors in the prefrontal cortex and hippocampus, either total number or distribution, were observed from weaning to adulthood. These results suggest that abnormalities of NMDA receptors occur prior to obvious schizophrenia-like behavioral manifestations. Hence, NMDA receptors may be potential therapeutic targets to prevent disease development during asymptomatic periods of schizophrenia, and may serve as targets for preventive and/or therapeutic strategies for schizophrenia. Further, PSD95, a scaffolding protein that is a component of the NMDA receptor signaling complex, is increased in the hippocampus of adult offspring, when serious behavioral abnormalities emerge. This result suggests that PSD95 may be involved in behavioral abnormalities of schizophrenia.
Collapse
Affiliation(s)
- Keke Hao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University.
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Binbin Luo
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Yaqi Cai
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Tengfei Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Zhaoxi Zhong
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, China.
| |
Collapse
|
9
|
Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods Mol Biol 2019; 2011:671-723. [PMID: 31273728 DOI: 10.1007/978-1-4939-9554-7_39] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The initial diagnosis, molecular investigation, treatment, and posttreatment care of major psychiatric disorders (schizophrenia and bipolar depression) are all still significantly hindered by the current inability to define these disorders in an explicit molecular signaling manner. High-dimensionality data analytics, using large datastreams from transcriptomic, proteomic, or metabolomic investigations, will likely advance both the appreciation of the molecular nature of major psychiatric disorders and simultaneously enhance our ability to more efficiently diagnose and treat these debilitating conditions. High-dimensionality data analysis in psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results. All of these issues combine to constrain the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges through the implementation of transcriptomic, proteomic, or metabolomics signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of intelligent high-dimensionality data-based differential diagnosis in mental disease diagnosis and treatment, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.
Collapse
|