1
|
Genc AG, McGuffin LJ. Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction. Methods Mol Biol 2025; 2867:121-139. [PMID: 39576578 DOI: 10.1007/978-1-0716-4196-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein structure prediction is fundamental to molecular biology and has numerous applications in areas such as drug discovery and protein engineering. Machine learning techniques have greatly advanced protein 3D modeling in recent years, particularly with the development of AlphaFold2 (AF2), which can analyze sequences of amino acids and predict 3D structures with near experimental accuracy. Since the release of AF2, numerous studies have been conducted, either using AF2 directly for large-scale modeling or building upon the software for other use cases. Many reviews have been published discussing the impact of AF2 in the field of protein bioinformatics, particularly in relation to neural networks, which have highlighted what AF2 can and cannot do. It is evident that AF2 and similar approaches are open to further development and several new approaches have emerged, in addition to older refinement approaches, for improving the quality of predictions. Here we provide a brief overview, aimed at the general biologist, of how machine learning techniques have been used for improvement of 3D models of proteins following AF2, and we highlight the impacts of these approaches. In the most recent experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP15), the most successful groups all developed their own tools for protein structure modeling that were based at least in some part on AF2. This improvement involved employing techniques such as generative modeling, changing parameters such as dropout to generate more AF2 structures, and data-driven approaches including using alternative templates and MSAs.
Collapse
Affiliation(s)
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
2
|
Xu S, Onoda A. Accurate and Fast Prediction of Intrinsically Disordered Protein by Multiple Protein Language Models and Ensemble Learning. J Chem Inf Model 2024; 64:2901-2911. [PMID: 37883249 DOI: 10.1021/acs.jcim.3c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Intrinsically disordered proteins (IDPs) play a vital role in various biological processes and have attracted increasing attention in the past few decades. Predicting IDPs from the primary structures of proteins offers a rapid and facile means of protein analysis without necessitating crystal structures. In particular, machine learning methods have demonstrated their potential in this field. Recently, protein language models (PLMs) are emerging as a promising approach to extracting essential information from protein sequences and have been employed in protein modeling to utilize their advantages of precision and efficiency. In this article, we developed a novel IDP prediction method named IDP-ELM to predict the intrinsically disordered regions (IDRs) as well as their functions including disordered flexible linkers and disordered protein binding. This method utilizes high-dimensional representations extracted from several state-of-the-art PLMs and predicts IDRs by ensemble learning based on bidirectional recurrent neural networks. The performance of the method was evaluated on two independent test data sets from CAID (critical assessment of protein intrinsic disorder prediction) and CAID2, indicating notable improvements in terms of area under the receiver operating characteristic (AUC), Matthew's correlation coefficient (MCC), and F1 score. Moreover, IDP-ELM requires solely protein sequences as inputs and does not entail a time-consuming process of protein profile generation, which is a prerequisite for most existing state-of-the-art methods, enabling an accurate, fast, and convenient tool for proteome-level analysis. The corresponding reproducible source code and model weights are available at https://github.com/xu-shi-jie/idp-elm.
Collapse
Affiliation(s)
- Shijie Xu
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Onoda
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Manyilov VD, Ilyinsky NS, Nesterov SV, Saqr BMGA, Dayhoff GW, Zinovev EV, Matrenok SS, Fonin AV, Kuznetsova IM, Turoverov KK, Ivanovich V, Uversky VN. Chaotic aging: intrinsically disordered proteins in aging-related processes. Cell Mol Life Sci 2023; 80:269. [PMID: 37634152 PMCID: PMC11073068 DOI: 10.1007/s00018-023-04897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1702 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is however less than the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the used here aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels, revealing the importance of "structure-function continuum" in aging. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment has simultaneously high liquid-liquid phase separation (LLPS) probability, "nuclear" localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, and stem cells exhaustion. Intrinsic disorder, LLPS, and aggregation propensity should be considered as features that could be markers of pathogenic proteins. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss of function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.
Collapse
Affiliation(s)
- Vladimir D Manyilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Baraa M G A Saqr
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Guy W Dayhoff
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Simon S Matrenok
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | | | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Sheng J, Yang Z, Zhang Q, Wang L, Xin Y. Dissociation of energy connectivity and functional connectivity in Alzheimer's disease is associated with maintenance of cognitive performance. Heliyon 2023; 9:e18121. [PMID: 37519690 PMCID: PMC10372235 DOI: 10.1016/j.heliyon.2023.e18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
The correlation between functional connectivity (FC) network segregation, glucose metabolism and cognitive decline has been recently identified. The coupling relationship between glucose metabolism and the intensity of neuronal activity obtained using hybrid PET/MRI techniques can provide additional information on the physiological state of the brain in patients with AD and mild cognitive impairment (MCI). It is a valuable task to use the above rules for constructing biomarkers that are closely related to the cognitive ability of individuals to monitor the pathological status of patients. This study proposed the concept of the energy connectivity (EC) network and its construction method. We hypothesized that the dissociation between energy connectivity and functional connectivity of brain regions is a valid indicator of cognitive ability in patients with dementia. The number of EC-attenuated brain regions (EC-AR) and the number of FC-attenuated brain regions (FC-AR) are obtained by comparison with the normal group, and the dissociation between functional connectivity and energy connectivity is indicated using the ratio of FC-AR to EC-AR for individuals in the disease group. The findings suggest that FC-AR/EC-AR values are accurate predictors of cognitive performance, while taking into account the cognitive recovery due to compensatory effects of the brain. The cognitive ability of some patients with cognitive recovery can also be predicted more accurately. This also indicates that lower functional connectivity and higher energy connectivity between network modules may be one of the important features that maintain cognitive performance. The concept of energy connectivity also has potential to help explore the pathological state of AD.
Collapse
Affiliation(s)
- Jinhua Sheng
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Ze Yang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China
- National Center of Gerontology, Beijing, 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Luyun Wang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Yu Xin
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
5
|
Coskuner-Weber O, Yuce-Erarslan E, Uversky VN. Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics. Polymers (Basel) 2023; 15:polym15030763. [PMID: 36772065 PMCID: PMC9919048 DOI: 10.3390/polym15030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
- Correspondence:
| | - Elif Yuce-Erarslan
- Chemical Engineering, Istanbul University-Cerrahpasa, Avcılar, Istanbul 34320, Turkey
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Reorganization of the outer layer of a model of the plasma membrane induced by a neuroprotective aminosterol. Colloids Surf B Biointerfaces 2023; 222:113115. [PMID: 36603410 DOI: 10.1016/j.colsurfb.2022.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.
Collapse
|
7
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
8
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
9
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
10
|
Binder JL, Berendzen J, Stevens AO, He Y, Wang J, Dokholyan NV, Oprea TI. AlphaFold illuminates half of the dark human proteins. Curr Opin Struct Biol 2022; 74:102372. [PMID: 35439658 PMCID: PMC10669925 DOI: 10.1016/j.sbi.2022.102372] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 01/05/2023]
Abstract
We investigate the use of confidence scores to evaluate the accuracy of a given AlphaFold (AF2) protein model for drug discovery. Prediction of accuracy is improved by not considering confidence scores below 80 due to the effects of disorder. On a set of recent crystal structures, 95% are likely to have accurate folds. Conformational discordance in the training set has a much more significant effect on accuracy than sequence divergence. We propose criteria for models and residues that are possibly useful for virtual screening. Based on these criteria, AF2 provides models for half of understudied (dark) human proteins and two-thirds of residues in those models.
Collapse
Affiliation(s)
- Jessica L Binder
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/@jessicamaine
| | - Joel Berendzen
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amy O Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yi He
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Chemistry and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; UNM Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Karimi A, Elmi M, Shiri Z, Baharvand H. Therapeutic potential of pluripotent stem cell-derived dopaminergic progenitors in Parkinson's disease: a systematic review protocol. Syst Rev 2021; 10:188. [PMID: 34172098 PMCID: PMC8235644 DOI: 10.1186/s13643-021-01736-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common age-dependent neurodegenerative disease that causes motor and cognitive disabilities. This disease is associated with a loss of dopamine content within the putamen, which stems from the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Several approved drugs are available that can effectively treat symptoms of PD. However, long-term medical management is often complicated and does not delay or halt disease progression. Alternatively, cell replacement strategies can address these shortcomings and provide dopamine where it is needed. Although using human pluripotent stem cells (hPSCs) for treatment of PD is a promising alternative, no consensus in the literature pertains to efficacy concerns of hPSC-based therapy for PD. This systematic review aims to investigate the efficacy of primate PSC-derived DA progenitor transplantation to treat PD in preclinical studies. METHODS This is a systematic review of preclinical studies in animal models of PD. We intend to use the following databases as article sources: MEDLINE (via PubMed), Web of Science, and SCOPUS without any restrictions on language or publication status for all related articles published until the end of April 2021. Two independent reviewers will select the titles and abstracts, extract data from qualifying studies, and assess the risk of bias using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of bias tool and the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Apomorphine-induced rotation test (APO-IR) and amphetamine-induced rotation test (AMP-IR) are defined as the primary outcomes. The standardized mean difference (SMD) by Hedges' g method (r) and odds ratio (OR) and related 95% confidence interval (CI) will be calculated to determine the size effect of the treatment. The heterogeneity between studies will be calculated by "I2 inconsistency of values and Cochran's Q statistical test," where I2 > 50% and/or p < 0.10 suggests high heterogeneity. Meta-analyses of random effects will be run when appropriate. DISCUSSION This study will present an overview of preclinical research on PSCs and their therapeutic effects in PD animal models. This systematic review will point out the strengths and limitations of studies in the current literature while encouraging the funding of new studies by public health managers and governmental bodies.
Collapse
Affiliation(s)
- Aliasghar Karimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mitra Elmi
- Perron Institute for Neurological and Translational Science, QEII Medical Center, University of Western Australia, Perth, Australia
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Royan Institute, Banihashem Sq., Banihashem St., Resalat Highway, 16635-148, Tehran, 1665659911 Iran
| |
Collapse
|
12
|
Leone M. Special Issue-The Conformational Universe of Proteins and Peptides: Tales of Order and Disorder. Molecules 2021; 26:3716. [PMID: 34207044 PMCID: PMC8234555 DOI: 10.3390/molecules26123716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Among biological macromolecules, proteins hold prominent roles in a vast array of physiological and pathological processes [...].
Collapse
Affiliation(s)
- Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
13
|
Shu D, Zhang L, Bai X, Yu J, Guo P. Stoichiometry of multi-specific immune checkpoint RNA Abs for T cell activation and tumor inhibition using ultra-stable RNA nanoparticles. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:426-435. [PMID: 33868786 PMCID: PMC8042240 DOI: 10.1016/j.omtn.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Immunotherapy has become a revolutionary subject in cancer therapy during the past few years. Immune checkpoint-targeting antibodies (Abs) could boost anticancer immune responses. However, certain protein-based immunotherapies revealed side effects and unfavorable biodistribution, so effective non-protein options with lower side effects are highly sought after. RNA's ability to form various three-dimensional configurations allows for the creation of a variety of ligands to bind different cell receptors. The rubber-like properties of RNA nanoparticles (NPs) allow for swift lodging to cancer vasculature with little accumulation in vital organs, resulting in a favorable pharmacokinetic/pharmacodynamic (PK/PD) profile and safe pharmacological parameters. Multi-specific drugs are expected to be the fourth wave of biopharmaceutical innovation. Herein, we report the development of multi-specific Ab-like RNA NPs carrying multiple ligands for immunotherapy. The stoichiometries and stereo conformations of the checkpoint-activating RNA NPs were optimized for T cell activation. When compared to mono- and bi-specific RNA NPs, the tri-specific Ab-like RNA NPs bound to the trimeric T cell receptor with the highest efficiency, showed the optimal T cell activation, and promoted the strongest anti-tumor function of immune cells. Animal trials demonstrated that the tri-specific RNA NPs inhibited cancer growth. This Ab-like RNA NP platform represents an alternative to protein Abs for tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Fatafta H, Samantray S, Sayyed-Ahmad A, Coskuner-Weber O, Strodel B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:135-185. [PMID: 34656328 DOI: 10.1016/bs.pmbts.2021.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure but do exhibit some dynamical and structural ordering. The structural plasticity of IDPs indicates that entropy-driven motions are crucial for their function. Many IDPs undergo function-related disorder-to-order transitions upon by their interaction with specific binding partners. Approaches that are based on both experimental and theoretical tools enable the biophysical characterization of IDPs. Molecular simulations provide insights into IDP structural ensembles and disorder-to-order transition mechanisms. However, such studies depend strongly on the chosen force field parameters and simulation techniques. In this chapter, we provide an overview of IDP characteristics, review all-atom force fields recently developed for IDPs, and present molecular dynamics-based simulation methods that allow IDP ensemble generation as well as the characterization of disorder-to-order transitions. In particular, we introduce metadynamics, replica exchange molecular dynamics simulations, and also kinetic models resulting from Markov State modeling, and provide various examples for the successful application of these simulation methods to IDPs.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; AICES Graduate School, RWTH Aachen University, Aachen, Germany
| | | | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, Istanbul, Turkey
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Curry AM, Fernàndez RD, Pagani TD, Abeyawardhane DL, Trahan ML, Lucas HR. Mapping of Photochemically-Derived Dityrosine across Fe-Bound N-Acetylated α-Synuclein. Life (Basel) 2020; 10:life10080124. [PMID: 32726960 PMCID: PMC7459884 DOI: 10.3390/life10080124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurological disease and belongs to a group of neurodegenerative disorders called synucleinopathies in which pathological aggregates of N-terminally acetylated α-synuclein (NAcα-Syn) accumulate in various regions of the brain. In PD, these NAcα-Syn aggregates have been found to contain covalent dityrosine crosslinks, which can occur either intermolecularly or intramolecularly. Cerebral metal imbalance is also a hallmark of PD, warranting investigations into the effects of brain biometals on NAcα-Syn. NAcα-Syn is an intrinsically disordered protein, and metal-mediated conformational modifications of this structurally dynamic protein have been demonstrated to influence its propensity for dityrosine formation. In this study, a library of tyrosine-to-phenylalanine (Y-to-F) NAcα-Syn constructs were designed in order to elucidate the nature and the precise residues involved in dityrosine crosslinking of Fe-bound NAcα-Syn. The structural capacity of each mutant to form dityrosine crosslinks was assessed using Photo-Induced Cross-Linking of Unmodified Proteins (PICUP), demonstrating that coordination of either FeIII or FeII to NAcα-Syn inhibits dityrosine crosslinking among the C-terminal residues. We further demonstrate that Y39 is the main contributor to dityrosine formation of Fe-bound NAcα-Syn, while Y125 is the main residue involved in dityrosine crosslinks in unmetalated NAcα-Syn. Our results confirm that iron coordination has a global effect on NAcα-Syn structure and reactivity.
Collapse
|
16
|
Computational prediction of protein aggregation: Advances in proteomics, conformation-specific algorithms and biotechnological applications. Comput Struct Biotechnol J 2020; 18:1403-1413. [PMID: 32637039 PMCID: PMC7322485 DOI: 10.1016/j.csbj.2020.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Protein aggregation is a widespread phenomenon that stems from the establishment of non-native intermolecular contacts resulting in protein precipitation. Despite its deleterious impact on fitness, protein aggregation is a generic property of polypeptide chains, indissociable from protein structure and function. Protein aggregation is behind the onset of neurodegenerative disorders and one of the serious obstacles in the production of protein-based therapeutics. The development of computational tools opened a new avenue to rationalize this phenomenon, enabling prediction of the aggregation propensity of individual proteins as well as proteome-wide analysis. These studies spotted aggregation as a major force driving protein evolution. Actual algorithms work on both protein sequences and structures, some of them accounting also for conformational fluctuations around the native state and the protein microenvironment. This toolbox allows to delineate conformation-specific routines to assist in the identification of aggregation-prone regions and to guide the optimization of more soluble and stable biotherapeutics. Here we review how the advent of predictive tools has change the way we think and address protein aggregation.
Collapse
|
17
|
Affiliation(s)
- Munishwar Nath Gupta
- Former Professor, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
18
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|