1
|
Kanwal A, Zulfiqar R, Cheema HA, Jabbar N, Iftikhar A, Butt AI, Sheikh SA, Pardo JV, Naz S. Rare Homozygous Variants in INSR and NFXL1 Are Associated with Severe Treatment-Resistant Psychosis. Int J Mol Sci 2025; 26:4925. [PMID: 40430072 PMCID: PMC12111829 DOI: 10.3390/ijms26104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Psychosis constitutes a cardinal component of schizophrenia and affects nearly fifty percent of those with bipolar disorder. We sought to molecularly characterize psychosis segregating in consanguineous families. Participants from eight multiplex families were evaluated using standardized testing tools. DNA was subjected to exome sequencing followed by Sanger sequencing. Effects of variants were modeled using in-silico tools, while cDNA from a patient's blood sample was analyzed to evaluate the effect of a splice-site variant. Twelve patients in six families were diagnosed with schizophrenia, whereas four patients from two families had psychotic bipolar disorder. Two homozygous rare deleterious variants in INSR (c.2232-7T>G) and NFXL1 (c.1322G>A; p.Cys441Tyr) were identified, which segregated with severe treatment-resistant psychosis/schizophrenia in two families. There were none, or ambiguous findings in the other six families. The predicted deleterious missense variant affected a conserved amino acid, while the intronic variant was predicted to affect splicing. However, cDNA analysis from a patient's blood sample did not reveal an aberrant transcript. Our results indicate that INSR and NFXL1 variants may have a role in psychosis that requires to be investigated further. Lack of molecular diagnosis in some patients suggests the need for genome sequencing to pinpoint the genetic causes.
Collapse
Affiliation(s)
- Ambreen Kanwal
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan; (A.K.); (R.Z.); (A.I.B.)
| | - Rimsha Zulfiqar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan; (A.K.); (R.Z.); (A.I.B.)
| | - Husnain Arshad Cheema
- Punjab Institute of Mental Health, Jail Road, Lahore 54000, Pakistan; (H.A.C.); (N.J.)
| | - Nauman Jabbar
- Punjab Institute of Mental Health, Jail Road, Lahore 54000, Pakistan; (H.A.C.); (N.J.)
| | - Amina Iftikhar
- Rainbow Obesity and Eating Disorders Centre, Shadman, Lahore 54000, Pakistan;
| | - Amina Iftikhar Butt
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan; (A.K.); (R.Z.); (A.I.B.)
| | - Sohail A. Sheikh
- Psychiatry Department, Hawkes Bay DHB, Hastings 4156, New Zealand;
| | - Jose V. Pardo
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan; (A.K.); (R.Z.); (A.I.B.)
| |
Collapse
|
2
|
Urkon M, Ferencz E, Szász JA, Szabo MIM, Orbán-Kis K, Szatmári S, Nagy EE. Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:614. [PMID: 40430434 PMCID: PMC12114801 DOI: 10.3390/ph18050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer's disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine-protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD.
Collapse
Affiliation(s)
- Melinda Urkon
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Elek Ferencz
- Service of Translational Medicine and Clinical Research, Emergency County Hospital Miercurea Ciuc, 530173 Miercurea Ciuc, Romania
| | - József Attila Szász
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Monica Iudita Maria Szabo
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Diabetology, Nutrition and Metabolic Disease, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
- Department of Physiology, M2, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Szabolcs Szatmári
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, F1, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|