1
|
Liu F, Zhou L, Zhang J, Wang Y, Wang Z, Liu X, Cai M. Genome-wide identification and transcriptome-based expression profiling of the Sox gene family in the spinyhead croaker (Collichthys lucidus). JOURNAL OF FISH BIOLOGY 2022; 100:15-24. [PMID: 34553785 DOI: 10.1111/jfb.14913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Sox genes encode transcription factors with a high-mobility group (HMG) box, playing critical roles in the initiation and maintenance of a variety of developmental processes, such as sex determination and differentiation. In the present study, we identified 26 Sox genes in the genome of spinyhead croaker Collichthys lucidus (Richardson, 1844) with homology-based analysis of the HMG box. The transcriptome-based expression profiles revealed that the expression of the Sox gene in gonads began to differ between sexes when the body length was 2.74 ± 0.24 cm. At that time, three Sox genes (Sox11b, Sox8a and Sox19) were significantly upregulated, accompanied by the downregulation of 12 Sox genes in the ovary, and six Sox genes were temporarily significantly upregulated in the testis. Afterwards, the expression profile of Sox genes changed only with a small amplitude in both the ovary and testis. For adult tissues, huge differences were observed in the expression profiles of Sox genes between ovaries and testes, as well as small differences in somatic tissues between sexes. These results provide clues to further decipher the role of Sox genes in the processes of sex determination and differentiation in spinyhead croaker and other teleosts.
Collapse
Affiliation(s)
- Fujiang Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Li Zhou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jing Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Xiande Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
2
|
Li B, Tian Y, Wen H, Qi X, Wang L, Zhang J, Li J, Dong X, Zhang K, Li Y. Systematic identification and expression analysis of the Sox gene family in spotted sea bass (Lateolabrax maculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100817. [PMID: 33677158 DOI: 10.1016/j.cbd.2021.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
The Sox gene family encodes a set of transcription factors characterized by a conserved Sry-related high mobility group (HMG)-box domain, which performs a series of essential biological functions in diverse tissues and developmental processes. In this study, the Sox gene family was systematically characterized in spotted sea bass (Lateolabrax maculatus). A total of 26 Sox genes were identified and classified into eight subfamilies, namely, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxH and SoxK. The phylogenetic relationship, exon-intron and domain structure analyses supported their annotation and classification. Comparison of gene copy numbers and chromosome locations among different species indicated that except tandem duplicated paralogs of Sox17/Sox32, duplicated Sox genes in spotted sea bass were generated from teleost-specific whole genome duplication during evolution. In addition, qRT-PCR was performed to detect the expression profiles of Sox genes during development and adulthood. The results showed that the expression of 16 out of 26 Sox genes was induced dramatically at different starting points after the multicellular stage, which is consistent with embryogenesis. At the early stage of sex differentiation, 9 Sox genes exhibited sexually dimorphic expression patterns, among which Sox3, Sox19 and Sox6b showed the most significant ovary-biased expression. Moreover, the distinct expression pattern of Sox genes was observed in different adult tissues. Our results provide a fundamental resource for further investigating the functions of Sox genes in embryonic processes, sex determination and differentiation as well as controlling the homeostasis of adult tissues in spotted sea bass.
Collapse
Affiliation(s)
- Bingyu Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingru Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jinku Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Ximeng Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
3
|
Lin H, Zhou Z, Zhao J, Zhou T, Bai H, Ke Q, Pu F, Zheng W, Xu P. Genome-Wide Association Study Identifies Genomic Loci of Sex Determination and Gonadosomatic Index Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:127-139. [PMID: 33196953 DOI: 10.1007/s10126-020-10007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Larimichthys crocea is one of the traditional marine culture fishes in China, widely distributed in South China Sea, East Sea, and southern Yellow Sea. Sex dimorphism is evident in this species that females present a substantial growth strength than males, suggesting breeding females could obtain more economic benefits in L. crocea aquaculture industry. With the continuous expansion of aquaculture industry, both identifying sex-associated genome region and understanding the genetic basis underlying gonad differentiation and development matter to not only sex control aquaculture but also breeding industry. Thus, genome-wide association analysis (GWAS) of sex determination was conducted with a random breeding population of 905 individuals (including 463 females and 442 males) by ddRAD sequencing. For sex determination, 21 significant single nucleotide polymorphisms (SNPs) in chromosome (Chr) 22 were identified. Surrounding these SNPs, we founded 14 candidate genes, including dmrt1, dmrt3, and piwil2, fam102a, and odf2. The sex-associated region was narrowed down further to 2.4 Mb on Chr22 through Fst scanning and insertion-deletion (InDel) analysis. Besides, 3 SNPs in the supposed sex-determining region on Chr22 were identified as highly associated with gonad differentiation through GWAS on gonadosomatic index (GSI) in 350 males and 231 females. Because of the significant difference of GSI between females and males of L. crocea, GWAS on GSI of different genders was also conducted independently. Finally, we identified a SNP in Chr18 showing genome-wide significant association with male GSI (MGSI) and three genes axl, cyp2a10, and cyp2g1 involved in the gonadal development regulation process of aromatase. Overall, this study explored the genetic basis of sex determination mechanism and provided novel insights into gonad differentiation and development, offering solid genetic support for sex control breeding, marker-assisted selection, and marine resources conservation.
Collapse
Affiliation(s)
- Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
4
|
Genome-wide investigation of Dmrt gene family in large yellow croaker (Larimichthys crocea). Theriogenology 2020; 156:272-282. [PMID: 32791392 DOI: 10.1016/j.theriogenology.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM (Doublesex/Mab-3) domain. Previous researches indicate this gene family is involved in various physiological processes, especially in sex determination/differentiation and gonad development. Despite the vital roles of the Dmrt gene family in physiological processes, the comprehensive characterization and analysis of the dmrt genes in large yellow croaker (Larimichthys crocea), one of the most commercially important marine fish in China, have not been described. In this study, we performed the first genome-wide systematic analysis of L. crocea dmrt genes through the bioinformatics method. A total of seven members of the Dmrt gene family including Lcdmrt1, Lcdmrt2a, Lcdmrt2b, Lcdmrt3, Lcdmrt4, Lcdmrt5, and Lcdmrt6 were excavated based on the genome data of L. crocea. Further analysis revealed that the dmrt genes of L. crocea were distributed unevenly across four chromosomes. There were three dmrt genes (Lcdmrt1, Lcdmrt2a, and Lcdmrt3) on 3rd chromosome, one (Lcdmrt6) on 13th chromosome, one (Lcdmrt4) on 14th chromosome, two on (Lcdmrt5 and Lcdmrt2b) 17th chromosome. The gene structure analysis indicated that the number of introns of different dmrt genes of L. crocea had some differences: Lcdmrt1 had four introns, Lcdmrt2a, Lcdmrt2b, and Lcdmrt6 had two introns, Lcdmrt3, Lcdmrt4, and Lcdmrt5 had only one intron. The expression pattern analysis with published gonad transcriptome datasets and further confirmed by qRT-PCR revealed that these members of the Dmrt gene family except for Lcdmrt4 were all sexually dimorphic and preferred expressing in testis. Furthermore, the expression pattern analysis also revealed that the expression level of Lcdmrt1 and Lcdmrt6 was significantly higher than that of other members, suggesting that these two genes may play a more important role in testis. Overall, our studies provide a comprehensive insight into the Dmrt gene family members and a basis for the further study of their biological functions in L. crocea.
Collapse
|
5
|
Wan ZY, Lin G, Yue G. Genes for sexual body size dimorphism in hybrid tilapia (Oreochromis sp. x Oreochromis mossambicus). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|