1
|
Lin Z, Liu T, Nie H, Ding J, Sun J, Niu D, Huo Z, Yan X. New insights into the role of solute carriers in response to salinity stress in the Manila clam (Ruditapes philippinarum). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101509. [PMID: 40233586 DOI: 10.1016/j.cbd.2025.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
In this study, we conducted a genome-wide identification of solute carrier genes in the Manila clam (RpSLCs) and identified a total of 307 expanded members. These RpSLC genes were further classified into five types (SLC5, SLC6, SLC16, SLC23, SLC46) based on their gene structure and subfamily relationships. RpSLC genes exhibited diverse protein lengths, molecular weights, and theoretical isoelectric points. According to the phylogenetic analysis, we categorized these members into 5 groups, within which the gene structure and motif compositions were conserved. The RNA-seq data analysis showed that RpSLC genes were differentially expressed in different developmental stages, tissues/organs, and osmotic stress. In addition, we conducted the assessment of the physiological levels of the Manila clam in response to salinity change, including assay of physiological indices in hemolymph, and ultrastructural observations of gill tissues. This study first systematically identified and analyze solute carrier gene family in response to osmotic stress in bivalve. The results provide insights into the molecular mechanisms of SLC-mediated transmembrane transport and its critical role in salinity tolerance in the Manila clam.
Collapse
Affiliation(s)
- Zihan Lin
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Jianfeng Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jingxian Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Dhiman P, Kumar R, Singh D. Neuronal nitric oxide synthase activation by tadalafil protects neurological impairments in a zebrafish larva model of hyperammonemia. Life Sci 2025; 361:123325. [PMID: 39710060 DOI: 10.1016/j.lfs.2024.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS Hyperammonaemia (HA) is a metabolic disorder characterized by increased ammonia levels in the blood and is associated with severe neurological impairments. Some previous findings have shown the involvement of the nitric oxide pathway in HA-induced neurological impairments. The current study explored the impact of tadalafil on neurological impairments induced by HA in a zebrafish larval model due to its reported indirect interactions with the nitric oxide pathway. MATERIAL AND METHODS HA was induced in zebrafish larvae by ammonium acetate exposure from 2 to 9 days post fertilization (dpf). Locomotor and cognitive functions were analysed following the treatment. The levels of gamma-aminobutyric acid (GABA), glutamate, and dopamine were measured in the larval head. The expression of genes associated with apoptosis (baxa and bcl2a), selected neurotransmitter receptors and bdnf was analysed. The protein levels of CREB and nNOS were also quantified. KEY FINDINGS Tadalafil incubation reversed the HA-associated locomotor and cognitive impairments in larvae. The treatment modulated GABA, dopamine, and glutamate levels. An upregulation in the expression of grin1a, gria2b, drd1b, drd2b, bdnf, and bcl2a, and downregulation of gabrz, gabrd, gabrg2 and baxa was observed following tadalafil treatment. The protein expression showed increased nNOS, p-CREB(Ser133), and decreased p-nNOS(Ser847) levels in the larvae incubated with tadalafil. SIGNIFICANCE The study concluded that tadalafil mitigates HA-induced neurological impairments by activating neuronal nitric oxide synthase. The study highlighted the possible application of tadalafil in the symptomatic management of neurological impairments in HA provided its efficacy and safety are further ensured in higher mammals.
Collapse
Affiliation(s)
- Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Kozlova AA, Rubets E, Vareltzoglou MR, Jarzebska N, Ragavan VN, Chen Y, Martens-Lobenhoffer J, Bode-Böger SM, Gainetdinov RR, Rodionov RN, Bernhardt N. Knock-out of the critical nitric oxide synthase regulator DDAH1 in mice impacts amphetamine sensitivity and dopamine metabolism. J Neural Transm (Vienna) 2023; 130:1097-1112. [PMID: 36792833 PMCID: PMC10460711 DOI: 10.1007/s00702-023-02597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Elena Rubets
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Magdalini R Vareltzoglou
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Vinitha N Ragavan
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | | | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Locascio A, Annona G, Caccavale F, D'Aniello S, Agnisola C, Palumbo A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int J Mol Sci 2023; 24:11182. [PMID: 37446358 DOI: 10.3390/ijms241311182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
5
|
Lite C, Guru A, Juliet M, Arockiaraj J. Embryonic exposure to butylparaben and propylparaben induced developmental toxicity and triggered anxiety-like neurobehavioral response associated with oxidative stress and apoptosis in the head of zebrafish larvae. ENVIRONMENTAL TOXICOLOGY 2022; 37:1988-2004. [PMID: 35470536 DOI: 10.1002/tox.23545] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 05/02/2023]
Abstract
Parabens are synthetic antimicrobial compounds used as a preservative for extending the shelf life of food, pharmaceutical and cosmetic products. The alkyl chain length of the paraben esters positively correlates with their antimicrobial property. Hence, long-chain paraben esters, namely butylparaben and propylparaben, are used in combination as they have better solubility and antimicrobial efficacy. Extensive use of parabens has now resulted in the ubiquitous presence of these compounds in various human and environmental matrices. During early life, exposure to environmental contaminants is known to cause oxidative-stress mediated apoptosis in developing organs. The brain being one of the high oxygen-consuming, metabolically active and lipid-rich organ, it is primarily susceptible to reactive oxygen species (ROS) and lipid peroxidation (LP) induced neuronal cell death. The primary cause for the impairment in cognitive and emotional neurobehvioural outcomes in neurodegenerative disease was found to be associated with neuronal apoptosis. The present study aimed to study butylparaben and propylparaben's effect on zebrafish during early embryonic stages. Besides this, the association between alteration in anxiety-like neurobehavioral response with oxidative stress and antioxidant status in head region was also studied. The study results showed variation in the toxic signature left by butylparaben and propylparaben on developmental parameters such as hatching rate, survival and non-lethal malformations in a time-dependent manner. Data from the light-dark preference test showed embryonic exposure to butylparaben and propylparaben to trigger anxiety-like behavior in zebrafish larvae. In addition, a significant increase in intracellular ROS and LP levels correlated with suppressed antioxidant enzymes: superoxide dismutases (SOD), catalases (CAT), Glutathione peroxidase (GPx), glutathione S-transferase (GST), and Glutathione (GSH) activity in the head region of the zebrafish larvae. Acetylcholinesterase (AChE) activity was also suppressed in the exposed groups, along with increased nitric oxide production. The overall observations show increased oxidative stress indices correlating with upregulated expression of apoptotic cells in a dose-dependent manner. Collectively, our findings reveal butylparaben and propylparaben as an anxiogenic neuroactive compound capable of inducing anxiety-like behavior through a mechanism involving oxidative-stress-induced apoptosis in the head of zebrafish larvae, which suggests a potential hazard to the early life of zebrafish and this can be extrapolated to human health as well.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
6
|
Guo D, Luo L, Kong Y, Kuang Z, Wen S, Zhao M, Zhang W, Fan J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105136. [PMID: 35772839 DOI: 10.1016/j.pestbp.2022.105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Siyi Wen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Annona G, Ferran JL, De Luca P, Conte I, Postlethwait JH, D’Aniello S. Expression Pattern of nos1 in the Developing Nervous System of Ray-Finned Fish. Genes (Basel) 2022; 13:918. [PMID: 35627303 PMCID: PMC9140475 DOI: 10.3390/genes13050918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022] Open
Abstract
Fish have colonized nearly all aquatic niches, making them an invaluable resource to understand vertebrate adaptation and gene family evolution, including the evolution of complex neural networks and modulatory neurotransmitter pathways. Among ancient regulatory molecules, the gaseous messenger nitric oxide (NO) is involved in a wide range of biological processes. Because of its short half-life, the modulatory capability of NO is strictly related to the local activity of nitric oxide synthases (Nos), enzymes that synthesize NO from L-arginine, making the localization of Nos mRNAs a reliable indirect proxy for the location of NO action domains, targets, and effectors. Within the diversified actinopterygian nos paralogs, nos1 (alias nnos) is ubiquitously present as a single copy gene across the gnathostome lineage, making it an ideal candidate for comparative studies. To investigate variations in the NO system across ray-finned fish phylogeny, we compared nos1 expression patterns during the development of two well-established experimental teleosts (zebrafish and medaka) with an early branching holostean (spotted gar), an important evolutionary bridge between teleosts and tetrapods. Data reported here highlight both conserved expression domains and species-specific nos1 territories, confirming the ancestry of this signaling system and expanding the number of biological processes implicated in NO activities.
Collapse
Affiliation(s)
- Giovanni Annona
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy;
- Department of Biology, University of Napoli Federico II, 80126 Napoli, Italy
| | | | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
8
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|