1
|
Carrillo-Muñoz AI, R-Jaimes SY, Hernández-Hernández GC, Castelán F. Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:38. [PMID: 39888528 PMCID: PMC11785713 DOI: 10.1007/s10695-025-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues. They are distributed in mechanosensory, muscle, skin, respiratory, circulatory, digestive, endocrine, urinary, reproductive, and immune systems, suggesting their involvement in the development and maintenance of all tissues/organs/systems. Despite this broad distribution, studies focusing on these molecules outside of the central nervous system have been limited to just 12 fish species. These investigations have revealed diverse expression patterns across different ages and tissues/organs/systems, expanding our comprehension of their functions beyond the central and peripheral nervous systems. Notably, BDNF and NT-3 are prominently expressed outside the central nervous system, particularly in mechanosensory and digestive tissues, whereas NGF is predominantly observed in mechanosensory and urinary systems. The expression and localization of neurotrophins and their receptors vary among organs, underscoring tissue-specific roles. Further research is imperative to decipher the precise functions and mechanisms of action of neurotrophins and their receptors in diverse fish tissues. Enhanced efforts are needed to include a broader range of fish species in these studies to advance our understanding of these agents in complex vertebrates, thereby shedding light on tissue development, regeneration, and maintenance, with potential implications for addressing organ-related issues.
Collapse
Affiliation(s)
- Aldo Isaac Carrillo-Muñoz
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
| | - Sharet Y R-Jaimes
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, 90750, Zacatelco, Mexico
| | | | - Francisco Castelán
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 90070, Tlaxcala, Mexico.
| |
Collapse
|
2
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
3
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Levanti M, Abbate F, Laurà R, Germanà A. Localization of Neurotrophin Specific Trk Receptors in Mechanosensory Systems of Killifish ( Nothobranchius guentheri). Int J Mol Sci 2021; 22:10411. [PMID: 34638748 PMCID: PMC8508645 DOI: 10.3390/ijms221910411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Germanà
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (M.L.); (F.A.); (R.L.)
| |
Collapse
|
4
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
5
|
Cacialli P, Gatta C, D'Angelo L, Leggieri A, Palladino A, de Girolamo P, Pellegrini E, Lucini C. Nerve growth factor is expressed and stored in central neurons of adult zebrafish. J Anat 2019; 235:167-179. [PMID: 30945286 PMCID: PMC6580073 DOI: 10.1111/joa.12986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, was initially described as neuronal survival and growth factor, but successively has emerged as an active mediator in many essential functions in the central nervous system of mammals. NGF is synthesized as a precursor pro-NGF and is cleaved intracellularly into mature NGF. However, recent evidence demonstrates that pro-NGF is not a simple inactive precursor, but is also secreted outside the cells and can exert multiple roles. Despite the vast literature present in mammals, studies devoted to NGF in the brain of other vertebrate models are scarce. Zebrafish is a teleost fish widely known for developmental genetic studies and is well established as model for translational neuroscience research. Genomic organization of zebrafish and mouse NGF is highly similar, and zebrafish NGF protein has been reported in mature and two-precursors forms. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the NGF mRNA and protein distribution in the adult zebrafish brain and to characterize the phenotype of NGF-positive cells. NGF mRNA was visualized by in situ hybridization on whole-mount brains. NGF protein distribution was assessed on microtomic sections by using an antiserum against NGF, able to recognize pro-NGF in adult zebrafish brain as demonstrated also in previous studies. To characterize NGF-positive cells, anti-NGF was employed on microtomic slides of aromatase B transgenic zebrafish (where radial glial cells appeared fluorescent) and by means of double-immunolabeling against NGF/proliferative cell nuclear antigen (PCNA; proliferation marker) and NGF/microtube-associated protein2 (MAP2; neuronal marker). NGF mRNA and protein were widely distributed in the brain of adult zebrafish, and their pattern of distribution of positive perikaryal was overlapping, both in males and females, with few slight differences. Specifically, the immunoreactivity to the protein was observed in fibers over the entire encephalon. MAP2 immunoreactivity was present in the majority of NGF-positive cells, throughout the zebrafish brain. PCNA and aromatase B cells were not positive to NGF, but they were closely intermingled with NGF cells. In conclusion, our study demonstrated that mature neurons in the zebrafish brain express NGF mRNA and store pro-NGF.
Collapse
Affiliation(s)
- Pietro Cacialli
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
- InsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085Univ RennesRennesFrance
| | - Claudia Gatta
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Livia D'Angelo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
- Stazione Zoologica Anton DohrnNapoliItaly
| | - Adele Leggieri
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Antonio Palladino
- Centro Ricerche Interdipartimentali sui BiomaterialiUniversità di Napoli Federico IINapoliItaly
| | - Paolo de Girolamo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Elisabeth Pellegrini
- InsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085Univ RennesRennesFrance
| | - Carla Lucini
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| |
Collapse
|
6
|
Identification and Expression of Neurotrophin-6 in the Brain of Nothobranchius furzeri: One More Piece in Neurotrophin Research. J Clin Med 2019; 8:jcm8050595. [PMID: 31052296 PMCID: PMC6571927 DOI: 10.3390/jcm8050595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins contribute to the complexity of vertebrate nervous system, being involved in cognition and memory. Abnormalities associated with neurotrophin synthesis may lead to neuropathies, neurodegenerative disorders and age-associated cognitive decline. The genome of teleost fishes contains homologs of some mammalian neurotrophins as well as a gene coding for an additional neurotrophin (NT-6). In this study, we characterized this specific neurotrophin in the short-lived fish Nothobranchius furzeri, a relatively new model for aging studies. Thus, we report herein for the first time the age-related expression of a neurotrophin in a non-mammalian vertebrate. Interestingly, we found comparable expression levels of NT-6 in the brain of both young and old animals. More in detail, we used a locked nucleic acid probe and a riboprobe to investigate the neuroanatomical distribution of NT-6 mRNA revealing a significant expression of the neurotrophin in neurons of the forebrain (olfactory bulbs, dorsal and ventral telencephalon, and several diencephalic nuclei), midbrain (optic tectum, longitudinal tori, and semicircular tori), and hindbrain (valvula and body of cerebellum, reticular formation and octavolateral area of medulla oblongata). By combining in situ hybridization and immunohistochemistry, we showed that NT-6 mRNA is synthesized in mature neurons. These results contribute to better understanding the evolutionary history of neurotrophins in vertebrates, and their role in the adult brain.
Collapse
|
7
|
Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann Anat 2016; 205:75-84. [DOI: 10.1016/j.aanat.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
8
|
Gatta C, Altamura G, Avallone L, Castaldo L, Corteggio A, D'Angelo L, de Girolamo P, Lucini C. Neurotrophins and their Trk-receptors in the cerebellum of zebrafish. J Morphol 2016; 277:725-36. [PMID: 27197756 DOI: 10.1002/jmor.20530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Neurotrophins (NTs) and their specific Trk-receptors are key molecules involved in the regulation of survival, proliferation, and differentiation of central nervous system during development and adulthood in vertebrates. In the present survey, we studied the expression and localization of neurotrophins and their Trk-receptors in the cerebellum of teleost fish Danio rerio (zebrafish). Teleostean cerebellum is composed of a valvula, body and vestibulolateral lobe. Valvula and body show the same three-layer structure as cerebellar cortex in mammals. The expression of NTs and Trk-receptors in the whole brain of zebrafish has been studied by Western blotting analysis. By immunohistochemistry, the localization of NTs has been observed mainly in Purkinje cells; TrkA and TrkB-receptors in cells and fibers of granular and molecular layers. TrkC was faintly detected. The occurrence of NTs and Trk-receptors suggests that they could have a synergistic action in the cerebellum of zebrafish. J. Morphol. 277:725-736, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | | | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| |
Collapse
|
9
|
D'Angelo L, Avallone L, Cellerino A, de Girolamo P, Paolucci M, Varricchio E, Lucini C. Neurotrophin-4 in the brain of adult Nothobranchius furzeri. Ann Anat 2016; 207:47-54. [PMID: 26970500 DOI: 10.1016/j.aanat.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Neurotrophin-4 (NT-4) is a member of the well-known family of neurotrophins that regulate the development of neuronal networks by participating in neuronal survival and differentiation, the growth of neuronal processes, synaptic development and plasticity, as well as myelination. NT-4 interacts with two distinct receptors: TrkB, high affinity receptor and p75 low-affinity neurotrophin receptor (p75(NTR)). In the present survey, we identified the gene encoding NT-4 in the teleost Nothobranchius furzeri, a model species for aging research. The identified gene shows a similarity of about 72% with medaka, the closest related species. The neuroanatomical localization of NT-4 mRNA is obtained by using an LNA probe. NT-4 mRNA expression is observed in neurons and glial cells of the forebrain and hindbrain, with very low signal found in the midbrain. This survey confirms that NT-4 is expressed in the brain of N. furzeri during adulthood, suggesting that it could also be implicated in the maintenance and regulation of neuronal functions.
Collapse
Affiliation(s)
- L D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - A Cellerino
- Scuola Normale Superiore di Pisa, Pisa, Italy; Laboratory of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - P de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - M Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - E Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - C Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|