1
|
Hosseini SH, Davoodi SR, Behnood A. Bicyclists injury severities: An empirical assessment of temporal stability. ACCIDENT; ANALYSIS AND PREVENTION 2022; 168:106616. [PMID: 35220086 DOI: 10.1016/j.aap.2022.106616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Cyclists are among the most vulnerable participants in road traffic, making their safety a top priority. Riding behavior of bicyclists could shift over time, affecting the level of injuries sustained in bicyclist-involved crashes. Many studies have been done to identify the factors influencing bicyclist injury severity, but the temporal stability of these variables over time needs further study. The temporal instability of components that affect the cyclist injury levels in bicycle collisions is explored in this paper. To obtain potential unobserved heterogeneity, yearly models of cyclist-injury levels (including potential consequences of no, minor, and severe injury) were measured separately applying a random parameters logit model that allows for potential heterogeneity in estimated parameters' means and variances. Employing a data source on bicycle collisions in Los Angeles, California, over the course of six years (January 1, 2012 to December 31, 2017), several variables which may impact the injury level of cyclists were explored. This paper has also employed a set of likelihood ratio tests assessing the temporal instability of the models. The temporal instability of the explanatory parameters has been evaluated with marginal effects. The results of the model assessment indicate that several factors may raise the chances of severe bicyclist injuries in collisions, including cyclists older than 55 years old, cyclists who were identified to be at-fault in crashes, rear-end collisions, cyclists who crossed into opposing lane before the collision, crashes occurring early mornings (i.e., 00:00 to 06:00) and so on. The results also showed that the details and estimated parameters of the model do not remain stable over the years, however the source of this instability is unclear. In addition, the findings of model estimation demonstrate that considering the heterogeneity in the random parameter means and variances will enhance the overall model fit. This study also emphasizes the significance of accounting for the transferability of estimated models and the temporal instability of parameters influencing the injury severity outcomes in order to dynamically examine the collected data and adjust safety regulations according to new observations.
Collapse
Affiliation(s)
| | | | - Ali Behnood
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907-2051, USA.
| |
Collapse
|
2
|
Caceres-Ayala C, Pautassi RM, Acuña MJ, Cerpa W, Rebolledo DL. The functional and molecular effects of problematic alcohol consumption on skeletal muscle: a focus on athletic performance. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:133-147. [PMID: 35389308 DOI: 10.1080/00952990.2022.2041025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chronic alcohol misuse is associated with alcoholic myopathy, characterized by skeletal muscle weakness and atrophy. Moreover, there is evidence that sports-related people seem to exhibit a greater prevalence of problematic alcohol consumption, especially binge drinking (BD), which might not cause alcoholic myopathy but can negatively impact muscle function and amateur and professional athletic performance.Objective: To review the literature concerning the effects of alcohol consumption on skeletal muscle function and structure that can affect muscle performance.Methodology: We examined the currently available literature (PubMed, Google Scholars) to develop a narrative review summarizing the knowledge about the effects of alcohol on skeletal muscle function and exercise performance, obtained from studies in human beings and animal models for problematic alcohol consumption.Results: Exercise- and sport-based studies indicate that alcohol consumption can negatively affect muscle recovery after vigorous exercise, especially in men, while women seem less affected. Clinical studies and pre-clinical laboratory research have led to the knowledge of some of the mechanisms involved in alcohol-related muscle dysfunction, including an imbalance between anabolic and catabolic pathways, reduced regeneration, increased inflammation and fibrosis, and deficiencies in energetic balance and mitochondrial function. These pathological features can appear not only under chronic alcohol misuse but also in other alcohol consumption patterns.Conclusions: Most laboratory-based studies use chronic or acute alcohol exposure, while episodic BD, the most common drinking pattern in amateur and professional athletes, is underrepresented. Nevertheless, alcohol consumption negatively affects skeletal muscle health through different mechanisms, which collectively might contribute to reduced sports performance.
Collapse
Affiliation(s)
- Constanza Caceres-Ayala
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo M Pautassi
- Instituto de Investigación Médica M. Y M. Ferreyra, Inimec-Conicet, Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María José Acuña
- Facultad de Salud, Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia En Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|