1
|
Lillyman DJ, Lee FS, Barnett EC, Miller TJ, Alvaro ML, Drvol HC, Wachs RA. Axial hypersensitivity is associated with aberrant nerve sprouting in a novel model of disc degeneration in female Sprague Dawley rats. JOR Spine 2022; 5:e1212. [PMID: 36203864 PMCID: PMC9520768 DOI: 10.1002/jsp2.1212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic low back pain is a global socioeconomic crisis and treatments are lacking in part due to inadequate models. Etiological research suggests that the predominant pathology associated with chronic low back pain is intervertebral disc degeneration. Various research teams have created rat models of disc degeneration, but the clinical translatability of these models has been limited by an absence of robust chronic pain-like behavior. To address this deficit, disc degeneration was induced via an artificial annular tear in female Sprague Dawley rats. The subsequent degeneration, which was allowed to progress for 18-weeks, caused a drastic reduction in disc volume. Furthermore, from week 10 till study conclusion, injured animals exhibited significant axial hypersensitivity. At study end, intervertebral discs were assessed for important characteristics of human degenerated discs: extracellular matrix breakdown, hypocellularity, inflammation, and nerve sprouting. All these aspects were significantly increased in injured animals compared to sham controls. Also of note, 20 significant correlations were detected between selected outcomes including a moderate and highly significant correlation (R = 0.59, p < 0.0004) between axial hypersensitivity and disc nerve sprouting. These data support this model as a rigorous platform to explore the pathobiology of disc-associated low back pain and to screen treatments.
Collapse
Affiliation(s)
- David J. Lillyman
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Fei San Lee
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Evie C. Barnett
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Tyler J. Miller
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Moreno Lozano Alvaro
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Henry C. Drvol
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| | - Rebecca A. Wachs
- Department of Biological Systems EngineeringUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
2
|
Harmon MD, Ramos DM, Nithyadevi D, Bordett R, Rudraiah S, Nukavarapu SP, Moss IL, Kumbar SG. Growing a backbone - functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomater Sci 2020; 8:1216-1239. [PMID: 31957773 DOI: 10.1039/c9bm01288e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Back pain and associated maladies can account for an immense amount of healthcare cost and loss of productivity in the workplace. In particular, spine related injuries in the US affect upwards of 5.7 million people each year. The degenerative disc disease treatment almost always arises due to a clinical presentation of pain and/or discomfort. Preferred conservative treatment modalities include the use of non-steroidal anti-inflammatory medications, physical therapy, massage, acupuncture, chiropractic work, and dietary supplements like glucosamine and chondroitin. Artificial disc replacement, also known as total disc replacement, is a treatment alternative to spinal fusion. The goal of artificial disc prostheses is to replicate the normal biomechanics of the spine segment, thereby preventing further damage to neighboring sections. Artificial functional disc replacement through permanent metal and polymer-based components continues to evolve, but is far from recapitulating native disc structure and function, and suffers from the risk of unsuccessful tissue integration and device failure. Tissue engineering and regenerative medicine strategies combine novel material structures, bioactive factors and stem cells alone or in combination to repair and regenerate the IVD. These efforts are at very early stages and a more in-depth understanding of IVD metabolism and cellular environment will also lead to a clearer understanding of the native environment which the tissue engineering scaffold should mimic. The current review focusses on the strategies for a successful regenerative scaffold for IVD regeneration and the need for defining new materials, environments, and factors that are so finely tuned in the healthy human intervertebral disc in hopes of treating such a prevalent degenerative process.
Collapse
Affiliation(s)
- Matthew D Harmon
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - D Nithyadevi
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Rosalie Bordett
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Isaac L Moss
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
The Frequency of Resurgery after Percutaneous Lumbar Surgery Using Dekompressor in a Ten-Year Period. Minim Invasive Surg 2018; 2018:5286760. [PMID: 30402284 PMCID: PMC6198552 DOI: 10.1155/2018/5286760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/25/2018] [Indexed: 11/30/2022] Open
Abstract
To prevent open surgical procedures, minimally invasive techniques, like Dekompressor (PLDD), have been developed. The absence of reherniation is an important factor correlating with clinical success after lumbar surgery. In this retrospective, observational study, the frequency of additional open surgery after PLDD in a long time retrospective was examined. The correlation between clinical symptoms and outcome was assessed, and the time between PLDD and open surgery was analyzed. Consecutive patients after PLDD between 2005 and 2007 were included. MacNab's outcome criteria were used to evaluate patient satisfaction. The need for additional open surgery of the lumbar spine, the period between Dekompressor and resurgery, and the treated levels were analyzed. In total, 73 patients were included in this study. The patients were seen one month after PLDD. The majority of patients (76.7%) had additional radicular pain. The most common level treated was L4-5 (58.9%). The follow-up time was longer than 5 years in 30.1% of the patients and longer than 10 years in 6.82%. The short-term success rate was 67.1%. Additional surgery was performed in 26.0% of patients, with 78.9% of the reoperations undertaken during the first year after PLDD. These patients had a statistically significant worse outcome (P = 0.025). Radicular pain was present in all patients with an early subsequent surgery, but only in 50% of patients with late surgery (P = 0.035). Significantly more patients with poor pain relief had radicular pain (P = 0.04). The short-term success rate was worsened by a resurgery rate of 26.0%. Subsequent surgery, a short time after PLDD, suggests that PLDD is not a replacement for open discectomy. Because patients with radicular pain had a worse outcome and more frequent resurgeries, whether radicular pain is an ideal indication for PLDD should be discussed.
Collapse
|