1
|
Zhou Y, Yang L, Zhang X, Zhu L, Xiong X, Xiao T, Zhu L. Construction of label-free electrochemical aptasensor and logic circuit based on triple-stranded DNA molecular switch. Anal Chim Acta 2025; 1334:343426. [PMID: 39638470 DOI: 10.1016/j.aca.2024.343426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Pesticide residues can cause chronic toxicity to the human body and lead to a series of diseases that damage the liver. Therefore, developing a highly sensitive, selective, and low-cost pesticide residues detection method is of great significance for protecting human health and safety. Nowadays, commonly used methods for pesticide residue detection include gas chromatography, high-performance liquid chromatography, and fluorescence sensing. These methods have some typical shortcomings, such as long sample pretreatment time, expensive instruments, and poor controllability. It was thought that a sensing platform based on electrochemical analysis method and functional DNA molecules can eliminate the above drawbacks. RESULTS Herein, this study developed a simple and label-free electrochemical aptasensor based on a triple-stranded DNA molecular switch. Acetamiprid (ACE) was served as the analytical model, and its binding with the aptamer opened the triple-stranded DNA molecular switch, resulting in the in-situ formation of G-quadruplex/hemin complexes on the electrode surface, obtaining a significantly enhanced electrochemical signal and achieving high specificity and label-free detection of ACE, with a detection limit as low as 4.67 × 10-3 nM (S/N = 3). In addition, due to the specific recognition between the aptamer and the target, the aptasensor effectively avoided the interference of other pesticides and exhibited good specificity. Moreover, benefiting from the pH-switchable of the triple-stranded DNA molecular switch and the programmability of DNA molecules, "OR" logic gate and "OR-INHIBIT" cascade logic circuit were successfully implemented. SIGNIFICANCE The proposed electrochemical aptasensor exhibited good accuracy and sensitivity in detecting acetamiprid in vegetable soil sample, indicating its practicality in the detection of pesticide residues in actual samples. Furthermore, the sensing system was reasonably programmed and successfully operated an "OR" logic gate and an "OR-INHIBIT" cascade logic circuit, demonstrating its potential application in intelligent sensing.
Collapse
Affiliation(s)
- Ya Zhou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
2
|
Klose JW, Begbie AJ, Toronjo-Urquiza L, Pukala TL. Native Mass Spectrometric Insights into the Formation and Stability of DNA Triplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:613-621. [PMID: 38393825 DOI: 10.1021/jasms.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Deoxyribonucleic acid is a genetic biomacromolecule that contains the inherited information required to build and maintain a living organism. While the canonical duplex DNA structure is rigorously characterized, the structure and function of higher order DNA structures such as DNA triplexes are comparatively poorly understood. Previous literature has shown that these triplexes can form under physiological conditions, and native mass spectrometry offers a useful platform to study their formation and stability. However, experimental conditions including buffer salt concentration, pH, and instrumentation parameters such as ion mode can confound analysis by impacting the amount of triplex observed by mass spectrometry. Using model 30mer Y-type triplex sequences, we demonstrate the influence a range of experimental variables have on the detection of DNA triplex structures, informing suitable conditions for the study. When carefully considered conditions are used, mass spectrometry offers a powerful complementary tool for the analysis of higher order DNA assemblies.
Collapse
Affiliation(s)
- Jack W Klose
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexander J Begbie
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
4
|
Boehm BJ, Whidborne C, Button AL, Pukala TL, Huang DM. DNA triplex structure, thermodynamics, and destabilisation: insight from molecular simulations. Phys Chem Chem Phys 2018; 20:14013-14023. [PMID: 29744501 DOI: 10.1039/c8cp02385a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes. The ability of molecular simulations in explicit solvent to accurately capture triplex thermodynamics is verified for the first time, with the free energy to dissociate a 15-base antiparallel purine triplex-forming oligomer (TFO) from the duplex found to be slightly higher than reported experimentally. The presence of netropsin in the minor groove destabilises the triplex as expected, reducing the dissociation free energy by approximately 50%. Netropsin binding is associated with localised narrowing of the minor groove near netropsin, an effect that has previously been under contention. This leads to localised widening of the major groove, weakening hydrogen bonds between the TFO and duplex. Consequently, destabilisation is found to be highly localised, occurring only when netropsin is bound directly opposite the TFO. The simulations also suggest that near saturation of the minor groove with ligand is required for complete triplex dissociation. A structural analysis of the DNA triplexes that can form with the FRDA-related duplex sequence indicates that the triplex with a parallel homopyrimidine TFO is likely to be more stable than the antiparallel homopurine-TFO triplex, which may have implications for disease onset and treatment.
Collapse
Affiliation(s)
- Belinda J Boehm
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
5
|
Bacolla A, Tainer JA, Vasquez KM, Cooper DN. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 2016; 44:5673-88. [PMID: 27084947 PMCID: PMC4937311 DOI: 10.1093/nar/gkw261] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
6
|
Beck JL. Developments in Electrospray Ionization Mass Spectrometry of Non-Covalent DNA–Ligand Complexes. Aust J Chem 2011. [DOI: 10.1071/ch11046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many anti-cancer drugs function by binding non-covalently to double-stranded (ds) DNA. Electrospray ionization mass spectrometry (ESI-MS) has emerged over the past decade as a sensitive technique for the determination of stoichiometries and relative binding affinities of DNA–ligand interactions. The chromosome contains nucleotide sequences, for example, guanosine-rich regions, that predispose them to the formation of higher order structures such as quadruplex DNA (qDNA). Sequences that form qDNA are found in the telomeres. The proposal that ligands that stabilize qDNA might interfere with the activity of telomerase in cancer cells has stimulated the search for ligands that are selective for qDNA over dsDNA. The insights gained from the development of ESI-MS methods for analysis of non-covalent dsDNA–ligand complexes are now being applied in the search for qDNA-selective ligands. ESI-MS is a useful first-pass screening technique for qDNA-binding ligands. This short review describes some experimental considerations for ESI-MS analysis of DNA–ligand complexes, briefly addresses the question of whether non-covalent DNA–ligand complexes are faithfully transferred from solution to the gas phase, discusses ion mobility mass spectrometry as a technique for probing this issue, and highlights some recent ESI-MS studies of qDNA-selective ligands.
Collapse
|
7
|
Wan C, Cui M, Song F, Liu Z, Liu S. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1281-1286. [PMID: 19297188 DOI: 10.1016/j.jasms.2009.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co(2+) and Ni(2+), significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba(2+) is notably beneficial to the formation of homodimer instead of triplex.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | | | | | | | | |
Collapse
|
8
|
Wan C, Guo X, Song F, Liu Z, Liu S. Interactions of mitoxantrone with duplex and triplex DNA studied by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:4043-8. [PMID: 19012354 DOI: 10.1002/rcm.3793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have examined interactions between mitoxantrone (MXT) and DNA duplexes or triplexes with different base compositions by using electrospray ionization mass spectrometry (ESI-MS), respectively. MXT interacts preferentially with DNA duplexes compared to the triplexes. In the mass spectrum of the duplex-MXT mixture, the complex peaks dominated in the ratios of duplex/MXT of 1:1, 1:2 and 1:3, and the 1:2 duplex/MXT peak was the most abundant. In contrast, only 1:1 triplex-MXT complexes were observed in the mass spectrum of the triplex-MXT mixture, and the most intensive peak was a free triplex ion without MXT. Moreover, no sequence selectivity of MXT to different DNA duplexes was found while MXT showed greater affinity to the triplexes that have adjacent TAT or C(+)GC sequences. In the course of sustained off-resonance irradiation collision-induced dissociation (SORI-CID), the MXT-duplex complexes generated two separated strands, and the MXT remained on the purine strand side. UV/Vis spectra showed that MXT interacted with DNA by intercalation. Compared with emodin (a duplex intercalator) and napthylquinoline (a triplex binder), we found that the side chain of MXT might play a role in the binding of MXT to the duplexes and the triplexes. ESI-MS shows an advantage in speed and straightforwardness for the study of drug interactions with nucleic acids.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | | | | | | | | |
Collapse
|
9
|
Rosu F, De Pauw E, Gabelica V. Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 2008; 90:1074-87. [DOI: 10.1016/j.biochi.2008.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/11/2008] [Indexed: 12/27/2022]
|
10
|
Wan C, Guo X, Liu Z, Liu S. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:164-72. [PMID: 17828803 DOI: 10.1002/jms.1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mM NH(4) (+) (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase. Other triplexes showed the same order, CTCT > CCTT > CTT, of ion abundances in mass spectra and T(m) values in solution. The more stable triplexes are those that contained higher percentage of C(+).GC triplets and an alternating CT sequence. However, the CCTT with the same C(+).GC triplets as the CTCT showed a higher stability than the latter during the gas-phase dissociation. Furthermore, a biphasic triplex-to-duplex-to-single transition was detected in the gas phase, while a monophasic triplex-to-single dissociation was observed in solution. The present results reveal that hydrogen bonds and electrostatic interactions dominate in the gas phase, while base stacking and hydrophobic interactions dominate in solution to stabilize the triplexes. Moreover, weak acidic conditions (pH 5-6) promote the formation of the parallel triplexes.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | | | | | | |
Collapse
|
11
|
Robertazzi A, Platts JA. Gas-phase DNA oligonucleotide structures. A QM/MM and atoms in molecules study. J Phys Chem A 2007; 110:3992-4000. [PMID: 16539422 DOI: 10.1021/jp056626z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
QM/MM calculations have been employed to investigate the role of hydrogen bonding and pi-stacking in single- and double-stranded DNA oligonucleotides. DFT calculations and Atoms in Molecules analysis on QM/MM-optimized structures allow characterization and estimation of the energies of pi-stacking and hydrogen-bond interactions. This shows that pi-stacking interactions depend on the number and the nature of the DNA bases for single-stranded nucleotides; for instance, guanines are found to be involved in strong hydrogen bonds, whereas adenines interact mainly via stacking interactions. The role of interbase hydrogen bonding was explored: the -NH2 groups of guanine, adenine, and cytosine participate in N-H...O and N-H...N interactions. These are much stronger in single-strand oligonucleotides, where the -NH2 groups are highly nonplanar. In double-stranded DNA, the strong base-pairing hydrogen bonds of complementary bases lead to more planar -NH2 groups, which tend to be involved in pi-stacking interactions rather than H-bonds. The use of AIM also allows us to evaluate the interplay of pi-stacking and H-bonding, suggesting that cooperativity does occur, but is generally limited to about 1-2 kcal/mol.
Collapse
Affiliation(s)
- Arturo Robertazzi
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | |
Collapse
|
12
|
Novopashina DS, Sinyakov AN, Ryabinin VA, Venyaminova AG, Halby L, Sun JS, Boutorine AS. Sequence-specific conjugates of oligo(2'-O-methylribonucleotides) and hairpin oligocarboxamide minor-groove binders: design, synthesis, and binding studies with double-stranded DNA. Chem Biodivers 2007; 2:936-52. [PMID: 17193185 DOI: 10.1002/cbdv.200590071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.
Collapse
Affiliation(s)
- Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 8, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Son LS, Bacolla A, Wells RD. Sticky DNA: in vivo formation in E. coli and in vitro association of long GAA*TTC tracts to generate two independent supercoiled domains. J Mol Biol 2006; 360:267-84. [PMID: 16764889 DOI: 10.1016/j.jmb.2006.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 02/02/2023]
Abstract
The expanded GAA*TTC repeat sequence associated with Friedreich's ataxia (FRDA) adopts non-B DNA structures, (triplexes and sticky DNA). Sticky DNA is formed in plasmids by the association of two long GAA*TTC tracts at lengths that are found in the sequence of the frataxin gene in patients. Most FRDA patients have expanded GAA*TTC repeats (up to 1700 triplets), which inhibit the transcription of the gene, thus diminishing the synthesis of frataxin, a mitochondrial protein involved in iron-sulfur cluster biogenesis. Negative supercoiling and MgCl(2) (or MnCl(2)) are required to stabilize sticky DNA (a dumbbell-shaped structure) in plasmids with a pair of repeat tracts where n> or =60 in the direct repeat orientation in vitro. Since the triplet repeat sequences (TRS) were symmetrically positioned in the plasmids and because a number of unique restriction sites were present in the vector, studies were conducted to evaluate the influence of selectively linearizing one or the other supercoiled domains created by the DNA*DNA associated region, i.e. the stable complex at the pair of TRS's. The two domains behave independently, thus confirming the association of the two tracts and the dumbbell-shaped plasmid in our model for sticky DNA. Linking number investigations were performed on a family of plasmids harboring different lengths (30, 60, or 176 repeats), orientations and number of tracts (one or two) of a GAA*TTC repeat in Escherichia coli to evaluate the in vivo role, if any, of sticky DNA. Unexpectedly, this non-B DNA conformation elicited the formation of a TRS-length dependent change in the global topology of the plasmids, indicative of an apparent compression of the primary helices. Thus, linking number determinations confirm that sticky DNA has an important consequence in vivo.
Collapse
Affiliation(s)
- Leslie S Son
- Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
14
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:693-704. [PMID: 15880598 DOI: 10.1002/jms.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|