1
|
Song W, Isaji T, Nakano M, Liang C, Fukuda T, Gu J. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J 2022; 36:e22149. [PMID: 34981577 DOI: 10.1096/fj.202101520r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-hiroshima, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
2
|
Abstract
Tissue glycans usually contain various structures, from simple to highly complicated, in different quantities. N-Glycans are particularly heterogeneous, with up to pentaantennary structures, different branch sequences, and several isomeric structures. 2-Aminopyridine (PA) tagging on released N-glycans is useful for separating isomers and to quantitatively analyze both the major and minor glycan structures in tissues using reversed-phase liquid chromatography (LC)-mass spectrometry (MS) and MS/MS analysis. Because the structural differences of PA-N-glycans influence their retention on a reversed-phase C18 column, it is easy to deduce the core structure, including core Fuc and bisecting GlcNAc as well as the branching pattern of each PA-N-glycan, based on the results of elution position, full MS, and MS/MS analysis. If more detailed structural analysis is required, combining sequential exoglycosidase digestions, sialic acid linkage-specific alkylamidation (SALSA), and/or SALSA/permethylation is useful for determining glycosidic linkages of branches. This article includes detailed protocols for the preparation of N-glycans released from glycoproteins/glycopeptides by glycoamidase F or hydrazinolysis, PA-tagging of N-glycans, fractionation with anion-exchange chromatography, and chemical or enzymatic modifications of PA-N-glycans, as well as reversed-phase LC-MS, MS/MS, and MSn analysis of PA-N-glycans from tissues. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of released N-glycans from tissue samples using glycoamidase F Alternate Protocol: Preparation of released N-glycans from tissue samples by hydrazinolysis Basic Protocol 2: PA-tagging of N-glycans and sample cleanup Support Protocol 1: Monitoring of PA-N-glycans using normal-phase HPLC Basic Protocol 3: Anion-exchange chromatography of PA-N-glycans Basic Protocol 4: Sequential exoglycosidase digestions Basic Protocol 5: Determination of Sia-linkages by SALSA Support Protocol 2: Cotton-HILIC solid-phase extraction to remove reagents for alkylamidation Basic Protocol 6: Sequential modifications of glycans with SALSA and permethylation Basic Protocol 7: LC-MS and MS/MS analysis of PA-N-glycans (before permethylation) Basic Protocol 8: LC-MS, MS/MS, and MSn analysis of PA-N-glycans (after permethylation).
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Higashi M, Yoshimura T, Usui N, Kano Y, Deguchi A, Tanabe K, Uchimura Y, Kuriyama S, Suzuki Y, Masaki T, Ikenaka K. A Potential Serum N-glycan Biomarker for Hepatitis C Virus-Related Early-Stage Hepatocellular Carcinoma with Liver Cirrhosis. Int J Mol Sci 2020; 21:ijms21238913. [PMID: 33255418 PMCID: PMC7727814 DOI: 10.3390/ijms21238913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Detection of early-stage hepatocellular carcinoma (HCC) is beneficial for prolonging patient survival. However, the serum markers currently used show limited ability to identify early-stage HCC. In this study, we explored human serum N-glycans as sensitive markers to diagnose HCC in patients with cirrhosis. Using a simplified fluorescence-labeled N-glycan preparation method, we examined non-sialylated and sialylated N-glycan profiles from 71 healthy controls and 111 patients with hepatitis and/or liver cirrhosis (LC) with or without HCC. We found that the level of serum N-glycan A2G1(6)FB, a biantennary N-glycan containing core fucose and bisecting GlcNAc residues, was significantly higher in hepatitis C virus (HCV)-infected cirrhotic patients with HCC than in those without HCC. In addition, A2G1(6)FB was detectable in HCV-infected patients with early-stage HCC and could be a more accurate marker than alpha-fetoprotein (AFP) or protein induced by vitamin K absence or antagonists-II (PIVKA-II). Moreover, there was no apparent correlation between the levels of A2G1(6)FB and those of AFP or PIVKA-II. Thus, simultaneous use of A2G1(6)FB and traditional biomarkers could improve the accuracy of HCC diagnosis in HCV-infected patients with LC, suggesting that A2G1(6)FB may be a reliable biomarker for early-stage HCC patients.
Collapse
Affiliation(s)
- Mikito Higashi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan;
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuichiro Kano
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
| | - Akihiro Deguchi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Tanabe
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Youichi Uchimura
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Shigeki Kuriyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan;
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Correspondence:
| |
Collapse
|
4
|
Kishimoto Y, Okada F, Maesako T, Yamamoto S, Kinoshita M, Hayakawa T, Suzuki S. Analysis of 2-aminopyridine labeled glycans by dual-mode online solid phase extraction for hydrophilic interaction and reversed-phase liquid chromatography. J Chromatogr A 2020; 1625:461194. [PMID: 32709309 DOI: 10.1016/j.chroma.2020.461194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Quantitative analysis of glycans released from glycoproteins using high-performance liquid chromatography (HPLC) requires fluorescent tag labeling to enhance sensitivity and selectivity. However, the methods required to remove large amounts of excess labeling reagents from the reaction mixture are time-consuming. Furthermore, these methods, including solvent extraction and solid phase extraction (SPE), often impair quantitative analysis. Here, we developed an online sample cleanup procedure for HPLC analysis of 2-aminopyridine (AP)-labeled glycans using a six-port/two-way valve and two small columns: one packed with a strong cation exchange resin (SCX) and the other comprising ODS silica gel. AP-labeled glycans delivered from an injection port were separated from excess AP by passing through an SCX column (4.6 mm i.d., 1 cm long) regulated to 40°C. The AP-labeled glycans were trapped on an ODS column (4.6 mm i.d., 1 cm long) to further separate them from inorganic contaminants. By changing the valve position after 2 min to connect the ODS column to an analysis column, AP-labeled glycans trapped in the ODS column were eluted with an acetonitrile-containing eluent followed by hydrophilic interaction liquid chromatography (HILIC) separation on an amide column or reversed-phase mode separation on a C30 column. This method was successfully used to analyze N-linked glycans released from several glycoprotein samples.
Collapse
Affiliation(s)
- Yuka Kishimoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Fuka Okada
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Tomohiro Maesako
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Takao Hayakawa
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
5
|
Takashima Y, Yoshimura T, Kano Y, Hayano A, Hondoh H, Ikenaka K, Yamanaka R. Differential expression of N-linked oligosaccharides in methotrexate-resistant primary central nervous system lymphoma cells. BMC Cancer 2019; 19:910. [PMID: 31510952 PMCID: PMC6739943 DOI: 10.1186/s12885-019-6129-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/03/2019] [Indexed: 01/19/2023] Open
Abstract
Background Oligosaccharides of glycoprotein, particularly negatively-charged sialylated N-glycans, on the surface of lymphomas play important roles in cell–cell interactions and bind immunoglobulin-like lectins, causing inflammatory responses and bioregulation. However, their characterizations have largely been unknown in central nervous system (CNS) lymphoma. Methods Here, we investigated expression patterns of N-linked oligosaccharides of glycoproteins in cells derived from CNS lymphomas and clinical specimens. Results We first generated methotrexate (MTX)-resistant cells derived from HKBML and TK as CNS lymphoma, and RAJI as non-CNS lymphoma and determined N-linked oligosaccharide structures in these cells and other non-CNS lymphoma-derived cells including A4/FUK, OYB, and HBL1. Major components of the total oligosaccharides were high-mannose type N-glycans, whose level increased in MTX-resistant HKBML and TK but decreased in MTX-resistant RAJI. We also detected sialylated biantennary galactosylated N-glycans with α1,6-fucosylation, A2G2F, and A2G2FB from HKBML, TK, and RAJI. Sialylated A4G4F was specifically isolated from RAJI. However, the ratios of these sialylated N-glycans slightly decreased against MTX-resistant compared to non-resistant cells. Interestingly, almost all complex-type oligosaccharides were α2,6-sialylated. Discussion This is the first study for the expression profile of N-oligosaccharides on MTX-resistant primary CNS lymphoma-derived cells HKBML and TK, and tumor tissues resected from patients with CNS lymphoma, Conclusion These results propose a possibility that the differential expression of high-mannose types and sialylated A2G2F, A2G2FB, and A4G4F on the surface of CNS lymphomas may provide a hint for targets for diagnoses and treatments of the oligosaccharide type-specific lymphomas.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Present Address: Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Kano
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Hondoh
- Department of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, 930-8550, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
6
|
Isaji T, Im S, Kameyama A, Wang Y, Fukuda T, Gu J. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294:4425-4436. [PMID: 30659093 DOI: 10.1074/jbc.ra118.005208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
Collapse
Affiliation(s)
- Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and
| | - Yuqin Wang
- the Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu 226001, China
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan,
| |
Collapse
|
7
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
8
|
Handa-Narumi M, Yoshimura T, Konishi H, Fukata Y, Manabe Y, Tanaka K, Bao GM, Kiyama H, Fukase K, Ikenaka K. Branched Sialylated N-glycans Are Accumulated in Brain Synaptosomes and Interact with Siglec-H. Cell Struct Funct 2018; 43:141-152. [DOI: 10.1247/csf.18009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Yuko Fukata
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
- Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| | - Guang-ming Bao
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
9
|
Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, Yamaguchi T, Kato K. Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. Chembiochem 2017; 18:396-401. [PMID: 27995699 DOI: 10.1002/cbic.201600595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Exploration of the conformational spaces of flexible oligosaccharides is essential to gain deeper insights into their functional mechanisms. Here we characterised dynamic conformation of a high-mannose-type dodecasaccharide with a terminal glucose residue, a critical determinant recognised by molecular chaperones. The dodecasaccharide was prepared by our developed chemoenzymatic technique, which uses 13 C labelling and lanthanide tagging to detect conformation-dependent paramagnetic effects by NMR spectroscopy. The NMR-validated molecular dynamics simulation produced the dynamic conformational ensemble of the dodecasaccharide. This determined its spatial distribution as well as the glycosidic linkage conformation of the terminal glucose determinant. Moreover, comparison of our results with previously reported crystallographic data indicates that the chaperone binding to its target oligosaccharides involves an induced-fit mechanism.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Megumi Kajino
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saeko Yanaka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Tong Zhu
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takumi Yamaguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
10
|
Tanabe K, Kitagawa K, Kojima N, Iijima S. Multifucosylated Alpha-1-acid Glycoprotein as a Novel Marker for Hepatocellular Carcinoma. J Proteome Res 2016; 15:2935-44. [PMID: 27354006 DOI: 10.1021/acs.jproteome.5b01145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-sensitivity and -specificity diagnostic techniques to detect early-stage hepatocellular carcinoma (HCC) are in high demand. Screening with serum HCC markers, such as alpha-fetoprotein, is not practical because they possess poor sensitivity and specificity. As such, we focused on glycan alterations of glycoproteins found in patient sera in an attempt to discover novel HCC markers that are more specific and sensitive than current HCC markers. Sera from 42 HCC patients and 80 controls, composed of 27 chronic hepatitis B patients, 26 chronic hepatitis C patients, and 27 healthy volunteers, were analyzed in this study. Glycopeptides obtained from serum proteins by trypsin digestion were enriched by ultrafiltration and Aleuria aurantia lectin-based affinity chromatography, followed by analysis using liquid chromatography time-of-flight mass spectrometry. The data were analyzed by our newly developed software, which calculates peak intensities and positions (m/z and elution time), aligns all sample peaks, and integrates all data into a single table. HCC markers were extracted from more than 30 000 detected glycopeptide peaks by t test, mean-fold change, and ROC analyses. As a result, we revealed that alpha-1-acid glycoprotein with multifucosylated tetraantennary N-glycans was significantly elevated in HCC patients, whereas the single fucosylated derivative was not.
Collapse
Affiliation(s)
- Kazuhiro Tanabe
- Advanced Technology Center, Medical Solution Segment, LSI Medience Corporation , Tokyo 174-8555, Japan
| | - Kae Kitagawa
- Biotechnology Laboratory, Mitsubishi Chemical Group Science and Technology Research Center, Inc. , Yokohama 227-8502, Japan
| | - Nozomi Kojima
- Biotechnology Laboratory, Mitsubishi Chemical Group Science and Technology Research Center, Inc. , Yokohama 227-8502, Japan
| | - Sadayo Iijima
- International Sales Department, LSI Medience Corporation , Tokyo 101-8517, Japan
| |
Collapse
|
11
|
Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, Ikenaka K. Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J 2014; 31:671-83. [PMID: 25417067 PMCID: PMC4245497 DOI: 10.1007/s10719-014-9566-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/03/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022]
Abstract
Oligosaccharides of glycoproteins expressed on the cell surface play important roles in cell-cell interactions, particularly sialylated N-glycans having a negative charge, which interact with sialic acid-binding immunoglobulin-like lectins (siglecs). The entire structure of sialylated N-glycans expressed in the mouse brain, particularly the linkage type of sialic acid residues attached to the backbone N-glycans, has not yet been elucidated. An improved method to analyze pyridylaminated sugar chains using high performance liquid chromatography (HPLC) was developed to determine the entire structure of sialylated N-linked sugar chains expressed in the adult and developing mouse cerebral cortices. Three classes of sialylated sugar chains were prevalent: 1) N-glycans containing α(2-3)-sialyl linkages on a type 2 antennary (Galβ(1-4)GlcNAc), 2) sialylated N-glycans with α(2-6)-sialyl linkages on a type 2 antennary, and 3) a branched sialylated N-glycan with a [Galβ(1-3){NeuAcα(2-6)}GlcNAc-] structure, which was absent at embryonic day 12 but then increased during development. This branched type sialylated N-glycan structure comprised approximately 2 % of the total N-glycans in the adult brain. Some N-glycans (containing type 2 antennary) were found to change their type of sialic acid linkage from α(2-6)-Gal to α(2-3)-Gal. Thus, the linkages and expression levels of sialylated N-glycans change dramatically during brain development.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kumar A, Torii T, Ishino Y, Muraoka D, Yoshimura T, Togayachi A, Narimatsu H, Ikenaka K, Hitoshi S. The Lewis X-related α1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J Biol Chem 2013; 288:28859-68. [PMID: 23986452 DOI: 10.1074/jbc.m113.469403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lewis X (Le(X), Galβ1-4(Fucα1-3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. Le(X) antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the Le(X) moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9(-/-) embryos, suggesting that Fut9-synthesized Le(X) is dispensable for the maintenance of NSCs. Another α1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique α1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.
Collapse
Affiliation(s)
- Akhilesh Kumar
- From the Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, and
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K. Application of Metabolic 13C Labeling in Conjunction with High-Field Nuclear Magnetic Resonance Spectroscopy for Comparative Conformational Analysis of High Mannose-Type Oligosaccharides. Biomolecules 2013; 3:108-23. [PMID: 24970159 PMCID: PMC4030882 DOI: 10.3390/biom3010108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
High mannose-type oligosaccharides are enzymatically trimmed in the endoplasmic reticulum, resulting in various processing intermediates with exposed glycotopes that are recognized by a series of lectins involved in glycoprotein fate determination in cells. Although recent crystallographic data have provided the structural basis for the carbohydrate recognition of intracellular lectins, atomic information of dynamic oligosaccharide conformations is essential for a quantitative understanding of the energetics of carbohydrate–lectin interactions. Carbohydrate NMR spectroscopy is useful for characterizing such conformational dynamics, but often hampered by poor spectral resolution and lack of recombinant techniques required to produce homogeneous glycoforms. To overcome these difficulties, we have recently developed a methodology for the preparation of a homogeneous high mannose-type oligosaccharide with 13C labeling using a genetically engineered yeast strain. We herein successfully extended this method to result in the overexpression of 13C-labeled Man9GlcNAc2 (M9) with a newly engineered yeast strain with the deletion of four genes involved in N-glycan processing. This enabled high-field NMR analyses of 13C-labeled M9 in comparison with its processing product lacking the terminal mannose residue ManD2. Long-range NOE data indicated that the outer branches interact with the core in both glycoforms, and such foldback conformations are enhanced upon the removal of ManD2. The observed conformational variabilities might be significantly associated with lectins and glycan-trimming enzymes.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan.
| | - Kotaro Yanagi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan.
| | - Toshihiko Kitajima
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan.
| | - Yasunori Chiba
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan.
| |
Collapse
|
14
|
Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K. Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 2012; 287:24356-64. [PMID: 22645129 DOI: 10.1074/jbc.m112.365643] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
15
|
Yoshimura T, Yamada G, Narumi M, Koike T, Ishii A, Sela I, Mitrani-Rosenbaum S, Ikenaka K. Detection of N-glycans on small amounts of glycoproteins in tissue samples and sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 2012; 423:253-60. [PMID: 22369894 DOI: 10.1016/j.ab.2012.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 11/30/2022]
Abstract
N-linked glycans harbored on glycoproteins profoundly affect the character of proteins by altering their structure or capacity to bind to other molecules. Specific knowledge of the role of N-glycans in these changes is limited due to difficulties in identifying precise carbohydrate structures on a given glycoprotein, which arises from the large amounts of glycoprotein required for N-glycan structural determination. Here, we refined a simple method to purify and detect trace amounts of N-glycans. During the N-glycan purification step, most contaminants were removed by two kinds of columns: a graphite carbon column and a cellulose column. N-Glycans were identified with a three-dimensional high-performance liquid chromatography (HPLC) system. Using our method, a global analysis of N-glycans from human muscle biopsy samples and mouse brain sections was possible. By combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with our method, we refined analytical procedures for N-glycans from SDS-PAGE gels using hydrazinolysis to achieve a high N-glycan recovery rate. N-Glycans on as little as 1 μg of the target protein transferrin or immunoglobulin G (IgG) were easily detected. These methods allowed us to efficiently determine glycoprotein N-glycans at picomole (pmol) levels.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yagi H, Ohno E, Kondo S, Yoshida A, Kato K. Development and Application of Multidimensional HPLC Mapping Method for O-linked Oligosaccharides. Biomolecules 2011; 1:48-62. [PMID: 24970123 PMCID: PMC4030830 DOI: 10.3390/biom1010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 11/16/2022] Open
Abstract
Glycosylation improves the solubility and stability of proteins, contributes to the structural integrity of protein functional sites, and mediates biomolecular recognition events involved in cell-cell communications and viral infections. The first step toward understanding the molecular mechanisms underlying these carbohydrate functionalities is a detailed characterization of glycan structures. Recently developed glycomic approaches have enabled comprehensive analyses of N-glycosylation profiles in a quantitative manner. However, there are only a few reports describing detailed O-glycosylation profiles primarily because of the lack of a widespread standard method to identify O-glycan structures. Here, we developed an HPLC mapping method for detailed identification of O-glycans including neutral, sialylated, and sulfated oligosaccharides. Furthermore, using this method, we were able to quantitatively identify isomeric products from an in vitro reaction catalyzed by N-acetylglucosamine-6O-sulfotransferases and obtain O-glycosylation profiles of serum IgA as a model glycoprotein.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Erina Ohno
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Sachiko Kondo
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Atsuhiro Yoshida
- Graduate School of Medical Sciences and Medical School, Nagoya City University, Kawasumi-1, Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan.
| | - Koichi Kato
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Toda T, Nakamura M, Yamada M, Nishine T, Torii T, Ikenaka K, Hashimoto R, Mori M. Glycoproteomic analysis of abnormal N-glycosylation on the kappa chain of cryocrystalglobulin in a patient of multiple myeloma. ACTA ACUST UNITED AC 2009. [DOI: 10.2198/jelectroph.53.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Tanabe K, Deguchi A, Higashi M, Usuki H, Suzuki Y, Uchimura Y, Kuriyama S, Ikenaka K. Outer arm fucosylation of N-glycans increases in sera of hepatocellular carcinoma patients. Biochem Biophys Res Commun 2008; 374:219-25. [PMID: 18619944 DOI: 10.1016/j.bbrc.2008.06.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
Abstract
Serum glycans are promising markers for early-stage cancer detection, but the research remains challenging because low concentrations of serum glycoproteins are secreted from early-stage tumors. We have established an N-glycan profiling method using liquid chromatography electrospray ionization-mass spectrometry with high sensitive derivative, trimethyl(4-aminophenyl)ammonium chloride (TMAPA). The mass sensitivity of TMAPA-labeled oligosaccharides was enhanced more than 50 times compared with 2-aminopyridine (PA) labeled oligosaccharides, and the analytical period was significantly shortened compared with traditional HPLC 2D-mapping. Using this method, we found about 28 major N-linked oligosaccharides in human sera, and we investigated their alterations in patients who developed hepatocellular carcinoma (HCC). We found that outer arm fucosylation (attached GlcNAc via an alpha 1-3/4 linkage) in highly branched oligosaccharides increased significantly in sera of HCC patients. Normalizing the level of outer arm fucosylation by taking into account platelet concentration allowed us to distinguish more clearly between HCC and LC patients.
Collapse
Affiliation(s)
- Kazuhiro Tanabe
- Analytical Services Division, Mitsubishi Chemical Group Science and Technology Research Center Inc.,1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ishii A, Ikenaka K, Pfeiffer SE. The N-glycan profile of mouse myelin, a specialized central nervous system membrane. J Neurochem 2008; 103 Suppl 1:25-31. [PMID: 17986136 DOI: 10.1111/j.1471-4159.2007.04823.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the rich complement of sugar chains found in cellular membranes is impeded by the complexity of cell types and membrane diversity. To overcome this, we have analyzed the N-linked sugar chain composition of the glycoproteins of CNS myelin, an elaboration of the plasma membranes of oligodendrocytes (OLs) that result in a multilamellar wrapping of neuronal axons, facilitating nerve conduction with dramatic savings of space and energy. Due to an usually high lipid to protein ratio, myelin can be separated readily from other heavier membranes on sucrose gradients and further fractionated into subdomains related to myelin structure and function, including compact myelin and myelin-associated axolemmal membrane (Menon et al. 2003). We analyzed these fractions for N-linked sugar chains, using 2D HPLC following hydrazinolysis and pyridylamination. Our results indicate that compared with total brain homogenate, the amount of N-glycans is 1.3-fold higher in the myelin-associated axolemmal membranes, but it is 0.5-fold less in CM. M5 [Manalpha1-3((Manalpha1-3)(Manalpha1-6)Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc] is the most abundant sugar chain in total brain homogenate, compact myelin, and myelin-associated axolemma, constituting approximately 20% of sugar chains. Although the types of sugar chains are similar among the fractions, their expression levels vary significantly. In addition to high mannose type oligosaccharides, the core fucosylated, biantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc) residue, A2G1(3)FB [Galbeta1-4GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc], A2G1(6)FB [GlcNAcbeta1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4 (Fucalpha1-6)GlcNAc] and BA-1 [Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc], and A1(6)G0F [Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6) GlcNAc] are also present in relatively large proportions in compact myelin. We suggest that these differences may be related to myelin-axolemmal function.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | | | | |
Collapse
|
21
|
Quantitative in silico analysis of the selectivity of graphitic carbon synthesized by different methods. Anal Bioanal Chem 2007; 390:369-75. [DOI: 10.1007/s00216-007-1675-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/30/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
|
22
|
Kondo A, Li W, Nakagawa T, Nakano M, Koyama N, Wang X, Gu J, Miyoshi E, Taniguchi N. From glycomics to functional glycomics of sugar chains: Identification of target proteins with functional changes using gene targeting mice and knock down cells of FUT8 as examples. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:1881-1889. [PMID: 17174880 DOI: 10.1016/j.bbapap.2006.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.
Collapse
Affiliation(s)
- Akihiro Kondo
- Department of Glycotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|