1
|
Morris TC, Reyneke B, Khan S, Khan W. Phage-antibiotic synergy to combat multidrug resistant strains of Gram-negative ESKAPE pathogens. Sci Rep 2025; 15:17235. [PMID: 40383795 PMCID: PMC12086229 DOI: 10.1038/s41598-025-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Bacteriophage-antibiotic-synergy (PAS) was investigated to target Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Enterobacter cloacae. Whole genome sequencing indicated that bacteriophage KPW17 targeting K. pneumoniae, clustered with genus Webervirus, ECSR5 targeting E. cloacae clustered with Eclunavirus, PAW33 targeting P. aeruginosa clustered with Bruynoghevirus, while ABTW1 targeting A. baumannii clustered with Vieuvirus. PAS analysis showed that the combination of ciprofloxacin (CIP) and levofloxacin (LEV) with PAW33 resulted in the synergistic eradication of all tested P. aeruginosa strains. Similarly, the combined use of doripenem (DOR) and LEV with KPW17 resulted in the synergistic eradication of the environmental and clinical K. pneumoniae strains, while the combined use of DOR and gentamicin (CN) with ECSR5 was synergistic against the clinical E. cloacae NCTC 13406. Gentamicin with ECSR5, however, only exhibited an additive effect for E. cloacae 4L, while ABTW1 with piperacillin-tazobactam (TZP) and imipenem (IPM) resulted in an indifferent interaction between the bacteriophage and tested antibiotics against the clinical A. baumannii AB3, i.e., the activity of the combination is equal to the activity of most active agent. Thus, while the observed PAS may offer an opportunity for the re-introduction or more efficient application of certain antibiotics to combat antibiotic resistance, extensive research is required to determine the optimal phage-antibiotic combinations, dosages and treatment regiments.
Collapse
Affiliation(s)
- Tinta Carmen Morris
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
2
|
Gunning L, O'Sullivan M, Boutonnet C, Pedrós-Garrido S, Jacquier JC. Effect of in vitro simulated gastrointestinal digestion on the antibacterial properties of bovine lactoferrin. J DAIRY RES 2024:1-8. [PMID: 39632620 DOI: 10.1017/s0022029924000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The aim of this research was to investigate the ability of an in vitro simulated gastrointestinal digestion (SGID) to generate peptides from bovine lactoferrin (LF) that possess antibacterial activity. Escherichia coli was examined as the target pathogen due to its prevalence in foods and the well-documented antibacterial effect of both LF and LF peptides against this organism. Results showed that in-vitro digested LF, specifically gastric LF digesta, exhibited significant antibacterial activity at low concentrations against E. coli compared to its undigested counterpart. Additionally, the highest antibacterial activity in the gastric digesta was associated with a relatively high molecular weight fraction of >30 kDa obtained within the first 30 min of the SGID. This demonstrates that the digestive process can result in the generation of antibacterial LF peptides and contribute to improving the antimicrobial properties of LF exhibited in its undigested state, making it a suitable dairy food additive to potentially provide protection against bacterial pathogens within the gastrointestinal system.
Collapse
Affiliation(s)
- Laura Gunning
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Michael O'Sullivan
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Claire Boutonnet
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Selene Pedrós-Garrido
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Jean-Christophe Jacquier
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Decker T, Rautenbach M, Khan S, Khan W. Antibacterial efficacy and membrane mechanism of action of the Serratia-derived non-ionic lipopeptide, serrawettin W2-FL10. Microbiol Spectr 2024; 12:e0295223. [PMID: 38842361 PMCID: PMC11218446 DOI: 10.1128/spectrum.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
The study aimed to investigate the antibacterial activity, cytotoxicity, and mechanism of action of the non-ionic, cyclic lipopeptide, serrawettin W2-FL10 against Staphylococcus aureus. W2-FL10 exhibited potent activity against the Gram-positive bacteria S. aureus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, and Bacillus subtilis, with minimum inhibitory concentration (MIC) values ranging from 6.3 to 31.3 μg/mL, while no activity was observed against Gram-negative bacteria. Broth microdilution assays showed that W2-FL10 interacted with key cell membrane components, such as lipid phosphatidyl glycerol and lipoteichoic acid of S. aureus. Upon membrane interaction, W2-FL10 dissipated membrane potential within 12 min and increased S. aureus membrane permeability within 28-40 min, albeit at slower rates and higher concentrations than the lytic peptide melittin. The observed membrane permeability, as detected with propidium iodide (PI), may be attributed to transmembrane pores/lesions, possibly dependent on dimer-driven lipopeptide oligomerization in the membrane. Scanning electron microscopy (SEM) imaging also visually confirmed the formation of lesions in the cell wall of one of the S. aureus strains, and cell damage within 1 h of exposure to W2-FL10, corroborating the rapid time-kill kinetics of the S. aureus strains. This bactericidal action against the S. aureus strains corresponded to membrane permeabilization by W2-FL10, indicating that self-promoted uptake into the cytosol may be part of the mode of action. Finally, this lipopeptide exhibited low to moderate cytotoxicity to the Chinese hamster ovarian (CHO) cell line in comparison to the control (emetine) with an optimal lipophilicity range (log D value of 2.5), signifying its potential as an antibiotic candidate. IMPORTANCE Antimicrobial resistance is a major public health concern, urgently requiring antibacterial compounds exhibiting low adverse health effects. In this study, a novel antibacterial lipopeptide analog is described, serrawettin W2-FL10 (derived from Serratia marcescens), with potent activity displayed against Staphylococcus aureus. Mechanistic studies revealed that W2-FL10 targets the cell membrane of S. aureus, causing depolarization and permeabilization because of transmembrane lesions/pores, resulting in the leakage of intracellular components, possible cytosolic uptake of W2-FL10, and ultimately cell death. This study provides the first insight into the mode of action of a non-ionic lipopeptide. The low to moderate cytotoxicity of W2-FL10 also highlights its application as a promising therapeutic agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Tanya Decker
- Water Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Marina Rautenbach
- BioPep Peptide Group, Department of Biochemistry, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Water Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity. Sci Rep 2023; 13:2360. [PMID: 36759548 PMCID: PMC9911388 DOI: 10.1038/s41598-023-28502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr-Ser-Ser-Ile/Leu-Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val-glucose-butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L-Y) and three new glucosamine derivatives (L-N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25-79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
Collapse
|
5
|
Saeed A, Madkhli AY, Pashameah RA, Bataweel NM, Razvi MA, Salah N. Antibacterial activity of the micro and nanostructures of the optical material tris(8-hydroxyquinoline)aluminum and its application as an antimicrobial coating. RSC Adv 2022; 12:27131-27144. [PMID: 36276042 PMCID: PMC9503380 DOI: 10.1039/d2ra04750k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Although tris(8-hydroxyquinoline)aluminum (Alq3), a fluorescent optical organometallic material, is known for its applications in optoelectronics, it has only few and limited applications in the biological field. In this study, the antibacterial activity of Alq3 micro and nanostructures was investigated. We prepared Alq3 nanostructures. We prepared nanosized Alq3 as rice-like structures that assembled into flower shapes with an α-crystal phase. Then, Alq3 micro and nanostructure antibacterial activities were estimated against seven human pathogenic bacterial strains. Besides, we compared their antibacterial activities with those of standard antibiotics. The minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and IC50 were evaluated. Alq3 micro and nanostructure antibacterial activity showed considerable values compared to standard antibiotics. Besides, the obtained data revealed that the antibacterial activity of Alq3 in nanostructures with a new morphology is more than that in microstructures. The antibacterial activity of Alq3 nanostructures was attributed to their more surface interactions with the bacterial cell wall. The molecules of 8-hydroxyquinoline in the Alq3 structure could play crucial roles in its antibacterial activity. To apply the achieved results, Alq3 was incorporated with polystyrene (PS) in a ratio of 2% to fabricate a PS/Alq3 composite and used to coat glass beakers, which showed inhibition in the bacterial growth reduced to 65% compared with non-coated beakers. The finding of this study showed that Alq3 could be used as a promising antimicrobial coating.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia +966563190832
- Department of Physics, Thamar University Thamar 87246 Yemen
- Center of Nanotechnology, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Aysh Y Madkhli
- Department of Physics, Faculty of Science, Jazan University Jazan 45142 Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Noor M Bataweel
- Department of Biological Science, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Centre, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mir Ali Razvi
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia +966563190832
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
6
|
Leussa ANN, Rautenbach M. Antiplasmodial Cyclodecapeptides from Tyrothricin Share a Target with Chloroquine. Antibiotics (Basel) 2022; 11:antibiotics11060801. [PMID: 35740207 PMCID: PMC9219824 DOI: 10.3390/antibiotics11060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
Previous research found that the six major cyclodecapeptides from the tyrothricin complex, produced by Brevibacillus parabrevis, showed potent activity against chloroquine sensitive (CQS) Plasmodium falciparum. The identity of the aromatic residues in the aromatic dipeptide unit in cyclo-(D-Phe1-Pro2-(Phe3/Trp3)-D-Phe4/D-Trp4)-Asn5-Gln6-(Tyr7/Phe7/Trp7)-Val8-(Orn9/Lys9)-Leu10 was proposed to have an important role in activity. CQS and resistant (CQR) P. falciparum strains were challenged with three representative cyclodecapeptides. Our results confirmed that cyclodecapeptides from tyrothricin had significantly higher antiplasmodial activity than the analogous gramicidin S, rivaling that of CQ. However, the previously hypothesized size and hydrophobicity dependent activity for these peptides did not hold true for P. falciparum strains, other than for the CQS 3D7 strain. The Tyr7 in tyrocidine A (TrcA) with Phe3-D-Phe4 seem to be related with loss in activity correlating with CQ antagonism and resistance, indicating a shared target and/or resistance mechanism in which the phenolic groups play a role. Phe7 in phenycidine A, the second peptide containing Phe3-D-Phe4, also showed CQ antagonism. Conversely, Trp7 in tryptocidine C (TpcC) with Trp3-D-Trp4 showed improved peptide selectivity and activity towards the more resistant strains, without overt antagonism towards CQ. However, TpcC lead to similar parasite stage inhibition and parasite morphology changes than previously observed for TrcA. The disorganization of chromatin packing and neutral lipid structures, combined with amorphous hemozoin crystals, could account for halted growth in late trophozoite/early schizont stage and the nanomolar non-lytic activity of these peptides. These targets related to CQ antagonism, changes in neural lipid distribution, leading to hemozoin malformation, indicate that the tyrothricin cyclodecapeptides and CQ share a target in the malaria parasite. The differing activities of these cyclic peptides towards CQS and CQR P. falciparum strains could be due to variable target interaction in multiple modes of activity. This indicated that the cyclodecapeptide activity and parasite resistance response depended on the aromatic residues in positions 3, 4 and 7. This new insight on these natural cyclic decapeptides could also benefit the design of unique small peptidomimetics in which activity and resistance can be modulated.
Collapse
|
7
|
Clements-Decker T, Rautenbach M, Khan S, Khan W. Metabolomics and Genomics Approach for the Discovery of Serrawettin W2 Lipopeptides from Serratia marcescens NP2. JOURNAL OF NATURAL PRODUCTS 2022; 85:1256-1266. [PMID: 35438991 DOI: 10.1021/acs.jnatprod.1c01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A metabolomics/peptidomics and genomics approach, using UPLC-MSE, molecular networking, and genome mining, was used to describe the serrawettin W2 lipopeptide family produced by Serratia marcescens NP2. Seven known serrawettin W2 analogues were structurally elucidated along with 17 new analogues, which varied based on the first (fatty acyl length of C8, C10, C12, or C12:1), fifth (Phe, Tyr, Trp, or Leu/Ile), and sixth (Leu, Ile, or Val) residues. Tandem MS results suggested that the previously classified serrawettin W3 may be an analogue of serrawettin W2, with a putative structure of cyclo(C10H18O2-Leu-Ser-Thr-Leu/Ile-Val). Chiral phase amino acid analysis enabled the distinction between l/d-Leu and l-Ile residues within nine purified compounds. 1H and 13C NMR analyses confirmed the structures of four purified new analogues. Additionally, genome mining was conducted using Serratia genome sequences available on the NCBI database to identify the swrA gene using the antiSMASH software. NRPSpredictor2 predicted the specificity score of the adenylation-domain within swrA with 100% for the first, second, and third modules (Leu-Ser-Thr), 60-70% for the fourth module (Phe/Trp/Tyr/Val), and 70% for the fifth module (Val/Leu/Ile), confirming MSE data. Finally, antibacterial activity was observed for compounds 6 and 11 against a clinical Enterococcus faecium strain.
Collapse
Affiliation(s)
- Tanya Clements-Decker
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - Marina Rautenbach
- BioPep Peptide Group, Department of Biochemistry, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
8
|
Basak S, Singh JK, Morri S, Shetty PH. Assessment and modelling the antibacterial efficacy of vapours of cassia and clove essential oils against pathogens causing foodborne illness. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Tsukamoto M, Zappala E, Caputo GA, Kikuchi JI, Najarian K, Kuroda K, Yasuhara K. Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9982-9995. [PMID: 34378943 DOI: 10.1021/acs.langmuir.1c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity.
Collapse
Affiliation(s)
- Manami Tsukamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Emanuele Zappala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun-Ichi Kikuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2800, United States
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
| |
Collapse
|
10
|
Mangmee S, Reamtong O, Kalambaheti T, Roytrakul S, Sonthayanon P. Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules 2021; 26:molecules26154654. [PMID: 34361810 PMCID: PMC8348142 DOI: 10.3390/molecules26154654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides are promising molecules to address the global antibiotic resistance problem, however, optimization to achieve favorable potency and safety is required. Here, a peptide-template modification approach was employed to design physicochemical variants based on net charge, hydrophobicity, enantiomer, and terminal group. All variants of the scorpion venom peptide BmKn-2 with amphipathic α-helical cationic structure exhibited an increased antibacterial potency when evaluated against multidrug-resistant Salmonella isolates at a MIC range of 4–8 µM. They revealed antibiofilm activity in a dose-dependent manner. Sheep red blood cells were used to evaluate hemolytic and cell selectivity properties. Peptide Kn2-5R-NH2, dKn2-5R-NH2, and 2F-Kn2-5R-NH2 (variants with +6 charges carrying amidated C-terminus) showed stronger antibacterial activity than Kn2-5R (a variant with +5 charges bearing free-carboxyl group at C-terminus). Peptide dKn2-5R-NH2 (d-enantiomer) exhibited slightly weaker antibacterial activity with much less hemolytic activity (higher hemolytic concentration 50) than Kn2-5R-NH2 (l-enantiomer). Furthermore, peptide Kn2-5R with the least hydrophobicity had the lowest hemolytic activity and showed the highest specificity to Salmonella (the highest selectivity index). This study also explained the relationship of peptide physicochemical properties and bioactivities that would fulfill and accelerate progress in peptide antibiotic research and development.
Collapse
Affiliation(s)
- Suthee Mangmee
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
| | - Thareerat Kalambaheti
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand;
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.M.); (O.R.)
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: or ; Tel.: +66-2-354-9100 (ext. 1440)
| |
Collapse
|
11
|
Masoudi Y, van Rensburg W, Barnard-Jenkins B, Rautenbach M. The Influence of Cellulose-Type Formulants on Anti- Candida Activity of the Tyrocidines. Antibiotics (Basel) 2021; 10:antibiotics10050597. [PMID: 34069885 PMCID: PMC8157355 DOI: 10.3390/antibiotics10050597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Candida species are highly adaptable to environmental changes with their phenotypic flexibility allowing for the evasion of most host defence mechanisms. Moreover, increasing resistance of human pathogenic Candida strains has been reported against all four classes of available antifungal drugs, which highlights the need for combinational therapies. Tyrocidines are cyclic antimicrobial peptides that have shown synergistic activity with antifungal drugs such as caspofungin and amphotericin B. However, these cyclodecapeptides have haemolytic activity and cytotoxicity, but they have been used for decades in the clinic for topical applications. The tyrocidines tend to form higher-order structures in aqueous solutions and excessive aggregation can result in variable or diminished activity. Previous studies have shown that the tyrocidines prefer ordered association to celluloses. Therefore, a formulation with soluble cellulose was used to control the oligomer stability and size, thereby increasing the activity against Candida spp. Of the formulants tested, it was found that commercial hydroxy-propyl-methyl cellulose, E10M, yielded the best results with increased stability, increased anti-Candida activity, and improved selectivity. This formulation holds promise in topical applications against Candida spp. infections.
Collapse
|
12
|
Rautenbach M, Kumar V, Vosloo JA, Masoudi Y, van Wyk RJ, Stander MA. Oligomerisation of tryptocidine C, a Trp-rich cyclodecapeptide from the antimicrobial tyrothricin complex. Biochimie 2020; 181:123-133. [PMID: 33333170 DOI: 10.1016/j.biochi.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023]
Abstract
Tryptocidine C (TpcC, cyclo[D-Phe1-Pro2-Trp3-D-Trp4-Asn5-Gln6-Trp7-Val8-Orn9-Leu10]) is a broad-spectrum antimicrobial peptide in the tyrothricin complex produced by a soil bacterium, Brevibacillus parabrevis. Electrospray mass spectrometric studies reveal the oligomerisation of TpcC into dimers and higher oligomers, analogous to tyrocidine C (TrcC, Trp7 replaced by Tyr7). Ion mobility mass spectrometry (IMMS) further confirms the formation of stable peptide dimers and tetramers with diameters of 2.7 nm and 3.3 nm, respectively, calculated from collisional cross section (CCS). Molecular dynamic simulations and docking studies support the formation of amphipathic dimers, with a diameter of 2.5 ± 0.07 nm calculated from low energy model CCS. Circular dichroism and IMMS studies point towards dynamic hydrogen-bonded conformational changes up to 28-33 μM after which the structures become more static (or in equilibrium). Fluorescence studies indicate aromatic stacking of Trp residues with a CMC of 18 μM in aqueous solutions. The concentration and time dependent interaction of Trp in oligomers indicate cooperativity in the TpcC oligomerisation that leads to the formation of higher order microscopic structures. Scanning electron microscopy studies unequivocally shows that TpcC forms nanospheres with a mean diameter of 25 nm. Repeated smaller oligomeric units, possibly dimers and tetramers, self-assemble to form these nanospheres.
Collapse
Affiliation(s)
- Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - Vikas Kumar
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - J Arnold Vosloo
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Yasamin Masoudi
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Rosalind J van Wyk
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marietjie A Stander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; LC-MS Unit of the Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
13
|
Vosloo JA, Rautenbach M. Following tyrothricin peptide production by Brevibacillus parabrevis with electrospray mass spectrometry. Biochimie 2020; 179:101-112. [DOI: 10.1016/j.biochi.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
|
14
|
Srinivasan S, Waghu FH, Idicula-Thomas S, Venkatesh KV. A steady-state modeling approach for simulation of antimicrobial peptide-cell membrane interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183242. [DOI: 10.1016/j.bbamem.2020.183242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/17/2023]
|
15
|
Hurst AN, Scarbrough B, Saleh R, Hovey J, Ari F, Goyal S, Chi RJ, Troutman JM, Vivero-Escoto JL. Influence of Cationic meso-Substituted Porphyrins on the Antimicrobial Photodynamic Efficacy and Cell Membrane Interaction in Escherichia coli. Int J Mol Sci 2019; 20:ijms20010134. [PMID: 30609680 PMCID: PMC6337135 DOI: 10.3390/ijms20010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Photodynamic inactivation (PDI) is a non-antibiotic option for the treatment of infectious diseases. Although Gram-positive bacteria have been shown to be highly susceptible to PDI, the inactivation of Gram-negative bacteria has been more challenging due to the impermeability properties of the outer membrane. In the present study, a series of photosensitizers which contain one to four positive charges (1–4) were used to evaluate the charge influence on the PDI of a Gram-negative bacteria, Escherichia coli (E. coli), and their interaction with the cell membrane. The dose-response PDI results confirm the relevance of the number of positive charges on the porphyrin molecule in the PDI of E. coli. The difference between the Hill coefficients of cationic porphyrins with 1–3 positive charges and the tetra-cationic porphyrin (4) revealed potential variations in their mechanism of inactivation. Fluorescent live-cell microscopy studies showed that cationic porphyrins with 1–3 positive charges bind to the cell membrane of E. coli, but are not internalized. On the contrary, the tetra-cationic porphyrin (4) permeates through the membrane of the cells. The contrast in the interaction of cationic porphyrins with E. coli confirmed that they followed different mechanisms of inactivation. This work helps to have a better understanding of the structure-activity relationship in the efficiency of the PDI process of cationic porphyrins against Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexandra N Hurst
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Beth Scarbrough
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Roa Saleh
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jessica Hovey
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Farideh Ari
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shreya Goyal
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Richard J Chi
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jerry M Troutman
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
16
|
Santovito E, das Neves J, Greco D, D’Ascanio V, Sarmento B, Logrieco AF, Avantaggiato G. Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S414-S422. [DOI: 10.1080/21691401.2018.1496924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Elisa Santovito
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Bari, Italy
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra, Portugal
| | - Donato Greco
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Bari, Italy
| | - Vito D’Ascanio
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Bari, Italy
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra, Portugal
| | | | | |
Collapse
|
17
|
Klein AS, Brass HUC, Klebl DP, Classen T, Loeschcke A, Drepper T, Sievers S, Jaeger KE, Pietruszka J. Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440. Chembiochem 2018; 19:1545-1552. [PMID: 29719131 DOI: 10.1002/cbic.201800154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Prodiginines are a group of naturally occurring pyrrole alkaloids produced by various microorganisms and known for their broad biological activities. The production of nature-inspired cyclic prodiginines was enabled by combining organic synthesis with a mutasynthesis approach based on the GRAS (generally recognized as safe) certified host strain Pseudomonas putida KT2440. The newly prepared prodiginines exerted antimicrobial effects against relevant alternative biotechnological microbial hosts whereas P. putida itself exhibited remarkable tolerance against all tested prodiginines, thus corroborating the bacterium's exceptional suitability as a mutasynthesis host for the production of these cytotoxic secondary metabolites. Moreover, the produced cyclic prodiginines proved to be autophagy modulators in human breast cancer cells. One promising cyclic prodiginine derivative stood out, being twice as potent as prodigiosin, the most prominent member of the prodiginine family, and its synthetic derivative obatoclax mesylate.
Collapse
Affiliation(s)
- Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Hannah Ursula Clara Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - David Paul Klebl
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Classen
- Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology, 44202, Dortmund, Germany
| | - Karl-Erich Jaeger
- Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany.,Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany
| |
Collapse
|
18
|
Alvares DS, Viegas TG, Ruggiero Neto J. Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophys Rev 2017; 9:669-682. [PMID: 28853007 PMCID: PMC5662038 DOI: 10.1007/s12551-017-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.
Collapse
Affiliation(s)
- Dayane S Alvares
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - João Ruggiero Neto
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil.
| |
Collapse
|
19
|
Use of predictive model to describe sporicidal and cell viability efficacy of betel leaf (Piper betle L.) essential oil on Aspergillus flavus and Penicillium expansum and its antifungal activity in raw apple juice. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Rautenbach M, Troskie AM, Vosloo JA, Dathe ME. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi. Biochimie 2016; 130:122-131. [DOI: 10.1016/j.biochi.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
|
21
|
Troskie AM, de Beer A, Vosloo JA, Jacobs K, Rautenbach M. Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology (Reading) 2014; 160:2089-2101. [DOI: 10.1099/mic.0.078840-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrocidines, a complex of analogous cyclic decapeptides produced by Bacillus aneurinolyticus, exhibited noteworthy activity against a range of phytopathogenic fungi, including Fusarium verticillioides, Fusarium solani and Botrytis cinerea. The activity of the tyrocidine peptide complex (Trc mixture) and purified tyrocidines exhibited minimum inhibition concentrations below 13 µg ml−1 (~10 µM) and was significantly more potent than that of the commercial imidazole fungicide, bifonazole. Although the tyrocidines’ activity was negatively influenced by the presence of Ca2+, it remained unaffected by the presence of Mg2+, Na+ and K+. Microscopic analysis revealed significant impact on the morphology of F. solani and Bot. cinerea including retarded germination and hyperbranching of hyphae. Studies with membrane-impermeable dyes, SYTOX green and propidium iodide suggested that the main mode of action of tyrocidines involves the disruption of fungal membrane integrity. Because of the tyrocidines’ broad spectrum and potent antifungal activity, possible multiple targets reducing the risk of overt resistance and general salt tolerance, they are promising candidates that warrant further investigation as bio-fungicides.
Collapse
Affiliation(s)
- Anscha M. Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Abré de Beer
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Johan A. Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| |
Collapse
|
22
|
Leussa ANN, Rautenbach M. Detailed SAR and PCA of the Tyrocidines and Analogues Towards Leucocin A-Sensitive and Leucocin A-ResistantListeria monocytogenes. Chem Biol Drug Des 2014; 84:543-57. [DOI: 10.1111/cbdd.12344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Adrienne Nyango-Nkeh Leussa
- BIOPEP Peptide Group; Department of Biochemistry; University of Stellenbosch; Private Bag X1 Matieland, 7602 Stellenbosch South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group; Department of Biochemistry; University of Stellenbosch; Private Bag X1 Matieland, 7602 Stellenbosch South Africa
| |
Collapse
|
23
|
Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 2014; 58:3697-707. [PMID: 24752256 DOI: 10.1128/aac.02381-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment.
Collapse
|
24
|
Nieuwoudt M, Lombard N, Rautenbach M. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt. Food Chem 2014; 157:559-67. [PMID: 24679818 DOI: 10.1016/j.foodchem.2014.02.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality.
Collapse
Affiliation(s)
- Melanie Nieuwoudt
- BIOPEP Peptide Group, Department of Biochemistry, Science Faculty, University of Stellenbosch, South Africa; Department of Food Science, Faculty of AgriScience, University of Stellenbosch, South Africa
| | - Nicolaas Lombard
- BIOPEP Peptide Group, Department of Biochemistry, Science Faculty, University of Stellenbosch, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, Science Faculty, University of Stellenbosch, South Africa.
| |
Collapse
|
25
|
A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi. J Microbiol Methods 2012; 91:551-8. [DOI: 10.1016/j.mimet.2012.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/22/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
|
26
|
Spathelf BM, Rautenbach M. Anti-listerial activity and structure–activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. Bioorg Med Chem 2009; 17:5541-8. [DOI: 10.1016/j.bmc.2009.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
|
27
|
Schulz V, Guenther M, Gerlach G, Magda JJ, Tathireddy P, Rieth L, Solzbacher F. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor. SMART STRUCTURES AND MATERIALS. NONDESTRUCTIVE EVALUATION FOR HEALTH MONITORING AND DIAGNOSTICS 2009; 7287:728712 (2009). [PMID: 21152365 PMCID: PMC2997697 DOI: 10.1117/12.816478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor.
Collapse
Affiliation(s)
- Volker Schulz
- Solid-State Electronics Laboratory (IFE), Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Margarita Guenther
- Solid-State Electronics Laboratory (IFE), Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Gerald Gerlach
- Solid-State Electronics Laboratory (IFE), Technische Universität Dresden, Helmholtzstr. 10, 01069 Dresden, Germany
| | - Jules J. Magda
- Department of Materials Science and Engineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Prashant Tathireddy
- Department of Electrical and Computer Engineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Loren Rieth
- Department of Electrical and Computer Engineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
| | - Florian Solzbacher
- Department of Materials Science and Engineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
- Department of Electrical and Computer Engineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Rautenbach M, Vlok NM, Stander M, Hoppe HC. Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1488-97. [PMID: 17462586 DOI: 10.1016/j.bbamem.2007.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 11/24/2022]
Abstract
Tyrothricin, a complex mixture of antibiotic peptides from Bacillus brevis, was reported in 1944 to have antimalarial activity rivalling that of quinine in chickens infected with Plasmodium gallinaceum. We have isolated the major components of tyrothricin, cyclic decapeptides collectively known as the tyrocidines, and tested them against the human malaria parasite Plasmodium falciparum using standard in vitro assays. Although the tyrocidines differ from each other by conservative amino acid substitutions in only three positions, their observed 50% parasite inhibitory concentrations (IC(50)) spanned three orders of magnitude (0.58 to 360 nM). Activity correlated strictly with increased apparent hydrophobicity and reduced total side-chain surface area and the presence of ornithine and phenylalanine in key positions. In contrast, mammalian cell toxicity and haemolytic activities of the respective peptides were considerably less variable (2.6 to 28 microM). Gramicidin S, a structurally analogous antimicrobial peptide, was less active (IC(50)=1.3 microM) and selective than the tyrocidines. It exerted its parasite inhibition by rapid and selective lysis of infected erythrocytes as judged by fluorescence and light microscopy. The tyrocidines, however, did not cause an overt lysis of infected erythrocytes, but an inhibition of parasite development and life-cycle progression.
Collapse
Affiliation(s)
- Marina Rautenbach
- Department of Biochemistry, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
29
|
Muñoz A, López-García B, Pérez-Payá E, Marcos JF. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochem Biophys Res Commun 2007; 354:172-7. [PMID: 17222805 DOI: 10.1016/j.bbrc.2006.12.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/26/2022]
Abstract
Short antimicrobial peptides represent an alternative to fight pathogen infections. PAF26 is a hexapeptide identified previously by a combinatorial approach against the fungus Penicillium digitatum and shows antimicrobial properties towards certain phytopathogenic fungi. In this work, PAF26 was used as lead compound and its properties were compared with two series of derivatives, obtained by either systematic alanine substitution or N-terminal amino acid addition. The alanine scan approach underlined the optimized sequence of PAF26 in terms of potency and permeation capability, and also the higher contribution of the cationic residues to these properties. The N-terminal addition of amino acids resulted in new heptapeptides with variations in their antimicrobial characteristics, and very low cytolysis to human red blood cells. Positive (Arg or Lys) and aromatic (Phe or Trp) residue addition increased broad spectrum activity of PAF26. Noteworthy, addition of selected residues had specific effects on the properties of derivatives of PAF26.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-CSIC, Apartado de Correos 73, Burjassot, 46100 Valencia, Spain
| | | | | | | |
Collapse
|