1
|
Ang GY, Yu CY, Chan KG, Singh KKB, Chan Yean Y. Development of a dry-reagent-based nucleic acid-sensing platform by coupling thermostabilised LATE-PCR assay to an oligonucleotide-modified lateral flow biosensor. J Microbiol Methods 2015; 118:99-105. [PMID: 26342435 DOI: 10.1016/j.mimet.2015.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 01/27/2023]
Abstract
In this study, we report for the first time the development of a dry-reagent-based nucleic acid-sensing platform by combining a thermostabilised linear-after-the-exponential (LATE)-PCR assay with a one-step, hybridisation-based nucleic acid lateral flow biosensor. The nucleic acid-sensing platform was designed to overcome the need for stringent temperature control during transportation or storage of reagents and reduces the dependency on skilled personnel by decreasing the overall assay complexity and hands-on time. The platform was developed using toxigenic Vibrio cholerae as the model organism due to the bacterium's propensity to cause epidemic and pandemic cholera. The biosensor generates result which can be visualised with the naked eyes and the limit of detection was found to be 1pg of pure genomic DNA and 10CFU/ml of toxigenic V. cholerae. The dry-reagent-based nucleic acid-sensing platform was challenged with 95 toxigenic V. cholerae, 7 non-toxigenic V. cholerae and 66 other bacterial strains in spiked stool sample and complete agreement was observed when the results were compared to that of monosialoganglioside (GM1)-ELISA. Heat-stability of the thermostabilised LATE-PCR reaction mixes at different storage temperatures (4-56°C) was investigated for up to 90days. The dry-reagent-based genosensing platform with ready-to-use assay components provides an alternative method for sequence-specific detection of nucleic acid without any cold chain restriction that is associated with conventional molecular amplification techniques.
Collapse
Affiliation(s)
- Geik Yong Ang
- Division of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Choo Yee Yu
- Division of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kok Gan Chan
- Division of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kirnpal Kaur Banga Singh
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Yean Chan Yean
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
XIANG Z, LIU YL, XING XQ, CHU YN, SONG QX, ZHOU GH. Genotyping of Alcohol Dehydrogenase Gene by Pyrosequencing Coupled with Improved Linear-after-the-Exponential Polymerase Chain Reaction Using Human Whole Blood as Starting Material. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60797-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS One 2014; 9:e94752. [PMID: 24733454 PMCID: PMC3986247 DOI: 10.1371/journal.pone.0094752] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/20/2014] [Indexed: 11/24/2022] Open
Abstract
Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.
Collapse
|
4
|
Rice LM, Reis AH, Mistry R, Khan H, Khosla P, Bharya S, Wangh LJ. Design and construction of a single tube, quantitative endpoint, LATE-PCR multiplex assay for ventilator-associated pneumonia. J Appl Microbiol 2013; 115:818-27. [PMID: 23773171 DOI: 10.1111/jam.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022]
Abstract
AIMS The goal of this study was to develop a molecular diagnostic multiplex assay for the quantitative detection of microbial pathogens commonly responsible for ventilator-associated pneumonia (VAP) and their antibiotic resistance using linear-after-the-exponential polymerase chain reaction (LATE-PCR). METHOD AND RESULTS This multiplex assay was designed for the quantitative detection and identification of pathogen genomic DNA of methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, Pseudomonas aeruginosa, plus a control target from Lactococcus lactis. After amplification, the single-stranded amplicons were detected simultaneously in the same closed tube by hybridization to low-temperature molecular beacon probes labelled with four differently coloured fluorophores. The resulting hybrids were then analysed by determining the fluorescence intensity of each of the four fluorophores as a function of temperature. CONCLUSIONS This LATE-PCR single tube multiplex assay generated endpoint fluorescent contours that allowed identification of all microbial pathogens commonly responsible for VAP, including MRSA. The assay was quantitative, identifying the pathogens present in the sample, no matter whether there were as few as 10 or as many 100 000 target genomes. SIGNIFICANCE AND IMPACT OF THE STUDY This assay is rapid, reliable and sensitive and is ready for preclinical testing using samples recovered from patients suffering from ventilator-associated pneumonia.
Collapse
Affiliation(s)
- L M Rice
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis. J Pathog 2013; 2012:424808. [PMID: 23326668 PMCID: PMC3541598 DOI: 10.1155/2012/424808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 12/11/2022] Open
Abstract
Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis.
Collapse
|
6
|
Rice L, Reis A, Ronish B, Carver-Brown R, Czajka J, Gentile N, Kost G, Wangh L. Design of a single-tube, endpoint, linear-after-the-exponential-PCR assay for 17 pathogens associated with sepsis. J Appl Microbiol 2012; 114:457-69. [PMID: 23136933 DOI: 10.1111/jam.12061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022]
Affiliation(s)
- L.M. Rice
- Department of Biology; Brandeis University; Waltham MA USA
| | - A.H. Reis
- Department of Biology; Brandeis University; Waltham MA USA
| | - B. Ronish
- Department of Biology; Brandeis University; Waltham MA USA
| | | | - J.W. Czajka
- Smiths Detection Diagnostics; Edgewood MD USA
| | - N. Gentile
- Point-of-Care Technologies Center (National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health); Point-of-Care Testing Center for Teaching and Research, Pathology and Laboratory Medicine; School of Medicine; University of California; Davis CA USA
| | - G. Kost
- Point-of-Care Technologies Center (National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health); Point-of-Care Testing Center for Teaching and Research, Pathology and Laboratory Medicine; School of Medicine; University of California; Davis CA USA
| | - L.J. Wangh
- Department of Biology; Brandeis University; Waltham MA USA
| |
Collapse
|
7
|
Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M. Molecular detection and genotyping of noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:153-67. [PMID: 23412888 DOI: 10.1007/s12560-012-9092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/13/2023]
Abstract
Noroviruses (NoVs) are a major cause of gastroenteritis worldwide in humans and animals and are known as very infectious viral agents. They are spread through feces and vomit via several transmission routes involving person-to-person contact, food, and water. Investigation of these transmission routes requires sensitive methods for detection of NoVs. As NoVs cannot be cultivated to date, detection of these viruses relies on the use of molecular methods such as (real-time) reverse transcriptase polymerase chain reaction (RT-PCR). Regardless of the matrix, detection of NoVs generally requires three subsequent steps: a virus extraction step, RNA purification, and molecular detection of the purified RNA, occasionally followed by molecular genotyping. The current review mainly focused on the molecular detection and genotyping of NoVs. The most conserved region in the genome of human infective NoVs is the ORF1/ORF2 junction and has been used as a preferred target region for molecular detection of NoVs by methods such as (real-time) RT-PCR, NASBA, and LAMP. In case of animal NoVs, broad range molecular assays have most frequently been applied for molecular detection. Regarding genotyping of NoVs, five regions situated in the polymerase and capsid genes have been used for conventional RT-PCR amplification and sequencing. As the expected levels of NoVs on food and in water are very low and inhibition of molecular methods can occur in these matrices, quality control including adequate positive and negative controls is an essential part of NoV detection. Although the development of molecular methods for NoV detection has certainly aided in the understanding of NoV transmission, it has also led to new problems such as the question whether low levels of human NoV detected on fresh produce and shellfish could pose a threat to public health.
Collapse
Affiliation(s)
- Ambroos Stals
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Timbs AT, Rugless MJ, Gallienne AE, Haywood AM, Henderson SJ, Old JM. Prenatal Diagnosis of Hemoglobinopathies by Pyrosequencing: A More Sensitive and Rapid Approach to Fetal Genotyping. Hemoglobin 2012; 36:144-50. [DOI: 10.3109/03630269.2011.647998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
LATE-PCR and allied technologies: real-time detection strategies for rapid, reliable diagnosis from single cells. Methods Mol Biol 2011; 688:47-66. [PMID: 20938832 DOI: 10.1007/978-1-60761-947-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Accurate detection of gene sequences in single cells is the ultimate challenge of PCR sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of Linear-After-The-Exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at -different concentrations, but with novel design criteria to insure high efficiency and specificity. LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single-cell genetic diagnosis.
Collapse
|
10
|
Song Q, Wu H, Feng F, Zhou G, Kajiyama T, Kambara H. Pyrosequencing on nicked dsDNA generated by nicking endonucleases. Anal Chem 2010; 82:2074-81. [PMID: 20121068 DOI: 10.1021/ac902825r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the pyrosequencing method is simple and fast, the step of ssDNA preparation increases the cost, labor, and cross-contamination risk. In this paper, we proposed a method enabling pyrosequencing directly on dsDNA digested by nicking endonucleases (NEases). Recognition sequence of NEases was introduced using artificially mismatched bases in a PCR primer (in the case of genotyping) or a reverse-transcription primer (in the case of gene expression analysis). PCR products were treated to remove excess amounts of primers, nucleotides, and pyrophosphate (PPi) prior to sequencing. After the nicking reaction, pyrosequencing starts at the nicked 3' end, and extension reaction occurs when the added dNTP is complementary to the non-nicked strand. Although the activity of strand displacement by Klenow is limited, approximately 10 bases are accurately sequenced; this length is long enough for genotyping and SRPP-based differential gene expression analysis. It was observed that the signals of two allele-specific bases in a pyrogram from nicked dsDNA are highly quantitative, enabling quantitative determination of allele-specific templates; thus, Down's Syndrome diagnosis as well as differential gene expression analysis was successfully executed. The results indicate that pyrosequencing using nicked dsDNA as templates is a simple, inexpensive, and reliable way in either quantitative genotyping or gene expression analysis.
Collapse
Affiliation(s)
- Qinxin Song
- China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
11
|
Li Y, Thompson H, Hemphill C, Hong F, Forrester J, Johnson RH, Zhang W, Meldrum DR. An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells. Anal Bioanal Chem 2010; 397:1853-9. [PMID: 20490471 DOI: 10.1007/s00216-010-3754-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
It is well known that gene expression is regulated at the level of individual cells, and more evidence is now emerging that heterogeneity of cell regulation is orders of magnitude greater than previously thought. In order to detect meaningful variations in transcription levels, it is necessary to measure gene expression at single cell levels rather than in bulk cells, where individual differences or heterogeneity could be lost. In this work, we report an improved reverse-transcriptase polymerase chain reaction (RT-PCR) protocol which allows the direct measurement of gene expression in one tube (5-25 microl of total PCR mixture) at the single mammalian cell level. The protocol employs a new cell lysis buffer, and involves no RNA isolation or nested PCR steps, significantly reducing the possibility of contamination and errors. We successfully applied this protocol in qRT-PCR and linear-after-the-exponential (LATE)-PCR to analyze selected genes of various expression levels from three cell lines. Although further characterization of RNA stability is important, the preliminary results showed that gene expression heterogeneity could be common among members of genetically identical cell populations. The protocol illustrated can be utilized for a wide array of applications without much modification, such as cancer cell analysis and preimplantation genetic diagnostics. In addition, the protocol is based on intercalator-based (SYBR Green PCR) chemistry, which is less expensive and suitable for high-throughput platforms.
Collapse
Affiliation(s)
- Yongzhong Li
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jia Y, Osborne A, Rice JE, Wangh LJ. Dilute-'N'-Go dideoxy sequencing of all DNA strands generated in multiplex LATE-PCR assays. Nucleic Acids Res 2010; 38:e119. [PMID: 20189962 PMCID: PMC2887968 DOI: 10.1093/nar/gkq111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have recently described a Dilute-'N'-Go protocol that greatly simplifies preparation and sequencing of both strands of an amplicon generated using linear-after-the-exponential (LATE)-PCR, an advanced form of asymmetric PCR . The same protocol can also be used to sequence all limiting primer strands in a multiplex LATE-PCR, by adding back each of the depleted limiting primers to a separate aliquot of the multiplex reaction. But, Dilute-'N'-Go sequencing cannot be used directly to sequence each of the excess primer strands in the same multiplex reaction, because all of the excess primers are still present at high concentration. This report demonstrates for the first time that it is possible to sequence each of the excess primer strands using a modified Dilute-'N'-Go protocol in which blockers are added to prevent all but one of the excess primers serving as the sequencing primer in separate aliquots. The optimal melting temperatures, positions and concentrations of blockers relative to their corresponding excess primers are defined in detail. We are using these technologies to measure DNA sequence changes in mitochondrial genomes that accompany aging and exposure to certain drugs.
Collapse
Affiliation(s)
- Yanwei Jia
- Biology Department, Brandeis University, 415 South St., Waltham, MA 02155, USA
| | | | | | | |
Collapse
|
13
|
YANG HY, XI T, LIANG C, CHEN ZY, XU DB, ZHOU Guo H. Preparation of Single-Stranded DNA for Pyrosequencing by Linear-after-the-Exponential-Polymerase Chain Reaction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60095-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Monoplex/multiplex linear-after-the-exponential-PCR assays combined with PrimeSafe and Dilute-'N'-Go sequencing. Nat Protoc 2008; 2:2429-38. [PMID: 17947984 DOI: 10.1038/nprot.2007.362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the design and execution of monoplex and multiplex linear-after-the-exponential (LATE)-PCR assays using a novel reagent, PrimeSafe, that suppresses all forms of mispriming. LATE-PCR is an advanced form of asymmetric amplification that uses a limiting primer and an excess primer for efficient exponential amplification of double-stranded DNA, followed by linear amplification of one strand. Each single-stranded amplicon can be quantitatively detected in real time or at end point. By separating primer annealing from product detection, LATE-PCR enables product analysis at low temperatures. Alternatively, each single strand can be sequenced by a convenient Dilute-'N'-Go procedure. Amplified samples are diluted with individual sequencing primers without the use of columns or spins. We have amplified and then sequenced 15 different single-stranded products generated in a single multiplexed LATE-PCR comprised of 15 pairs of unrelated primers. Dilute-'N'-Go dideoxy sequencing is more convenient, faster and less expensive than sequencing double-stranded amplicons generated via conventional symmetric PCR. The preparation of LATE-PCR products for Dilute-'N'-Go sequencing takes only 30 seconds.
Collapse
|
15
|
Cohen D, Dickerson JA, Whitmore CD, Turner EH, Palcic MM, Hindsgaul O, Dovichi NJ. Chemical cytometry: fluorescence-based single-cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:165-190. [PMID: 20636078 DOI: 10.1146/annurev.anchem.1.031207.113104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.
Collapse
Affiliation(s)
- Daniella Cohen
- Department of Chemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Hartshorn C, Eckert JJ, Hartung O, Wangh LJ. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos. BMC Biotechnol 2007; 7:87. [PMID: 18067662 PMCID: PMC2246118 DOI: 10.1186/1472-6750-7-87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 12/07/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. RESULTS We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. CONCLUSION This paper describes the first example of multiplex RT-LATE-PCR and its utility, when combined with PurAmp sample preparation, for quantitative analysis of transcript levels in single cells. With this technique, copy numbers of different RNAs can be accurately measured independently from their relative abundance in a cell, a goal that cannot be achieved using symmetric PCR. The technique illustrated in this work is relevant to a wide array of applications, such as stem cell and cancer cell analysis and preimplantation genetic diagnostics.
Collapse
Affiliation(s)
- Cristina Hartshorn
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| | | | | | | |
Collapse
|
17
|
Zhu LX, Zhang ZW, Liang D, Jiang D, Wang C, Du N, Zhang Q, Mitchelson K, Cheng J. Multiplex asymmetric PCR-based oligonucleotide microarray for detection of drug resistance genes containing single mutations in Enterobacteriaceae. Antimicrob Agents Chemother 2007; 51:3707-13. [PMID: 17646412 PMCID: PMC2043267 DOI: 10.1128/aac.01461-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A multiplex asymmetric PCR (MAPCR)-based microarray method was developed for the detection of 10 known extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC beta-lactamase genes in gram-negative bacteria and for the typing of six important point mutations (amino acid positions 35, 43, 130, 179, 238, and 240) in the bla(SHV) gene. The MAPCR is based on a two-round reaction to promote the accumulation of the single-stranded amplicons amenable for microarray hybridization by employing multiple universal unrelated sequence-tagged primers and elevating the annealing temperature at the second round of amplification. A strategy to improve the discrimination efficiency of the microarray was constituted by introducing an artificial mismatch into some of the allele-specific oligonucleotide probes. The microarray assay correctly identified the resistance genes in both the reference strains and some 111 clinical isolates, and these results were also confirmed for some isolates by direct DNA sequence analysis. The resistance genotypes determined by the microarray correlated closely with phenotypic MIC susceptibility testing. This fast MAPCR-based microarray method should prove useful for undertaking important epidemiological studies concerning ESBLs and plasmid-mediated AmpC enzymes and could also prove invaluable as a preliminary screen to supplement phenotypic testing for clinical diagnostics.
Collapse
Affiliation(s)
- Ling-Xiang Zhu
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sanchez JA, Abramowitz JD, Salk JJ, Reis AH, Rice JE, Pierce KE, Wangh LJ. Two-temperature LATE-PCR endpoint genotyping. BMC Biotechnol 2006; 6:44. [PMID: 17144924 PMCID: PMC1698914 DOI: 10.1186/1472-6750-6-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 12/04/2006] [Indexed: 11/23/2022] Open
Abstract
Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE)-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA) and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of 2:1 and 1:2 ratios of the same alleles. Conclusion SNP genotyping via Two-Temperature LATE-PCR takes place in a homogeneous closed-tube format and uses a single hybridization probe per SNP site. These assays are convenient, rely on endpoint analysis, improve the options for construction of multiplex assays, and are suitable for SNP genotyping, mutation scanning, and detection of DNA duplication or deletions.
Collapse
Affiliation(s)
- J Aquiles Sanchez
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
| | - Jessica D Abramowitz
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Jesse J Salk
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98019, USA
| | - Arthur H Reis
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
| | - John E Rice
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
| | - Kenneth E Pierce
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
| | - Lawrence J Wangh
- Department of Biology, MS008, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|