1
|
Zeng Y, Cui L, Wang M, Huang L, Jiang M, Liu Y, Gao Y, Zheng Y. P II protein is essential for transcriptional regulation of anf gene cluster for iron-only nitrogenase in Rhodopseudomonas palustris. Appl Environ Microbiol 2025; 91:e0046525. [PMID: 40207968 DOI: 10.1128/aem.00465-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
In addition to catalyzing the biological nitrogen fixation, iron-only (Fe-only) nitrogenase is also able to reduce carbon dioxide (CO2) to formate (HCOO-) and methane (CH4). AnfA is responsible for the transcriptional activation of the anf gene cluster for Fe-only nitrogenase, whose expression is repressed by fixed nitrogen. However, it remains unclear how AnfA is regulated to control the expression of Fe-only nitrogenase. Here, we found that in Rhodopseudomonas palustris, PII proteins play a critical role in regulating the expression of Fe-only nitrogenase genes via AnfA. We hypothesize that the deuridylylated PII protein GlnK1, which was upregulated in the presence of ammonium (NH4+), could inhibit AnfA activity by forming a potential AnfA-GlnK1 complex. This likely serves as a fail-safe mechanism to prevent R. palustris from expressing Fe-only nitrogenase when AnfA is accidentally expressed under nitrogen-excess conditions. The uridylylated PII protein GlnK2UMP, which was upregulated in response to nitrogen starvation, stimulated the expression of an active AnfA hexamer that further activated the expression of Fe-only nitrogenase under nitrogen-fixing and Mo-free conditions. This study provides new insights into the regulation of Fe-only nitrogenase in R. palustris.IMPORTANCEThe expression and maturation of nitrogenase are tightly regulated by ambient nitrogen levels, which limits the persistence and efficiency of biological nitrogen fixation. This study offers new insights into the regulatory mechanism of AnfA by PII proteins in Rhodopseudomonas palustris. Understanding the regulation of AnfA, the transcriptional activator of the Fe-only nitrogenase gene cluster, could provide strategies to better control the expression of iron-only nitrogenase. Nitrogen-fixing bacteria that constitutively express iron-only nitrogenase have the potential to be developed into promising biofertilizers, as their nitrogen-fixing activity is enhanced and independent of molybdenum availability in the soil.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingwei Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Mengmei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Lu Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Mingyue Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Maeda I. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms 2021; 10:microorganisms10010028. [PMID: 35056477 PMCID: PMC8777916 DOI: 10.3390/microorganisms10010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.
Collapse
Affiliation(s)
- Isamu Maeda
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| |
Collapse
|
3
|
DNA Microarray-Based Identification of Genes Regulated by NtrC in Bradyrhizobium japonicum. Appl Environ Microbiol 2015; 81:5299-308. [PMID: 26025905 DOI: 10.1128/aem.00609-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
The Bradyrhizobium japonicum NtrBC two-component system is a critical regulator of cellular nitrogen metabolism, including the acquisition and catabolism of nitrogenous compounds. To better define the roles of this system, genome-wide transcriptional profiling was performed to identify the NtrC regulon during the response to nitrogen limitation. Upon cells perceiving low intracellular nitrogen, they stimulate the phosphorylation of NtrC, which induces genes responsible for alteration of the core glutamine synthetase/glutamate synthase nitrogen assimilation pathway, including the genes for the glutamine synthetases and PII proteins. In addition, genes responsible for the import and utilization of multiple nitrogen sources, specifically nitrate and nitrite, were upregulated by NtrC activation. Mutational analysis of a candidate nitrite reductase revealed a role for NtrC in regulating the assimilation of nitrite, since mutations in both ntrC and the gene encoding the candidate nitrite reductase abolished the ability to grow on nitrite as a sole nitrogen source.
Collapse
|
4
|
McInnis CE, Blackwell HE. Non-native N-aroyl L-homoserine lactones are potent modulators of the quorum sensing receptor RpaR in Rhodopseudomonas palustris. Chembiochem 2013; 15:87-93. [PMID: 24281952 DOI: 10.1002/cbic.201300570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Quorum sensing (QS) is a process by which bacteria use low-molecular-weight signaling molecules (or autoinducers) to assess their local population densities and alter gene expression levels at high cell numbers. Many Gram-negative bacteria use N-acyl L-homoserine lactones (AHLs) with aliphatic acyl groups as signaling molecules for QS. However, bacteria that utilize AHLs with aroyl acyl groups have been recently discovered; they include the metabolically versatile soil bacterium Rhodopseudomonas palustris, which uses p-coumaroyl HL (p-cAHL) as its QS signal. This autoinducer is especially unusual because its acyl group is believed to originate from a monolignol (i.e., p-coumarate) produced exogenously by plants in the R. palustris environment, rather than through the endogenous fatty acid biosynthesis pathway like other native AHLs. As such, p-cAHL could signal not only bacterial density, but also the availability of an exogenous plant-derived substrate and might even constitute an interkingdom signal. Like other Gram-negative bacteria, QS in R. palustris is controlled by the p-cAHL signal binding its cognate LuxR-type receptor, RpaR. We sought to determine if non-native aroyl HLs (ArHLs) could potentially activate or inhibit RpaR in R. palustris, and thereby modulate QS in this bacterium. Herein, we report the testing of a set of synthetic ArHLs for RpaR agonism and antagonism by using a R. palustris reporter strain. Several potent non-native RpaR agonists and antagonists were identified. Additionally, the screening data revealed that lower concentrations of ArHL are required to strongly agonize RpaR than to antagonize it. Structure-activity relationship analyses of the active ArHLs indicated that potent RpaR agonists tend to have sterically small substituents on their aryl groups, most notably in the ortho position. In turn, the most potent RpaR antagonists were based on either the phenylpropionyl HL (PPHL) or the phenoxyacetyl HL (POHL) scaffold, and many contained an electron-withdrawing group at either the meta or para positions of the aryl ring. To our knowledge, the compounds reported herein represent the first abiotic chemical modulators of RpaR, and more generally, the first abiotic ligands capable of intercepting QS in bacteria that utilize native ArHL signals. In view of the origins of the p-cAHL signal in R. palustris, the largely unknown role of QS in this bacterium, and R. palustris' unique environmental lifestyles, we anticipate that these compounds could be valuable as chemical probes to study QS in R. palustris in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Christine E McInnis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706 (USA); Current address: Dow Microbial Control, The Dow Chemical Company, 727 Norristown Rd., P. O. Box 904, Spring House, PA 19477 (USA)
| | | |
Collapse
|
5
|
How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 2011; 78:1023-32. [PMID: 22179236 DOI: 10.1128/aem.07254-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.
Collapse
|
6
|
Abstract
TAP (tandem affinity purification) allows rapid and clean isolation of a tagged protein along with its interacting partners from cell lysates. Initially developed in yeast, the TAP method has subsequently been adapted to other cells and organisms. In combination with MS analysis, this method has become an indispensable tool for systematic identification of target-associated protein complexes. The key feature of TAP is the use of a dual-affinity tag, which is fused to the protein of interest. The original TAP tag consisted of two IgG-binding units of Protein A of Staphylococcus aureus and the calmodulin-binding peptide. As the technique has been widely exploited, a number of alternative TAP tags based on other affinity handles have been developed. The present review gives an overview of the various tag combinations for TAP with a highlight on those alternatives that result in improved yields or unique features. The information provided should assist in the selection and development of TAP tags for specific applications.
Collapse
|
7
|
Kertesz V, Connelly HM, Erickson BK, Hettich RL. PTMSearchPlus: Software Tool for Automated Protein Identification and Post-Translational Modification Characterization by Integrating Accurate Intact Protein Mass and Bottom-Up Mass Spectrometric Data Searches. Anal Chem 2009; 81:8387-95. [DOI: 10.1021/ac901163c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vilmos Kertesz
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Heather M. Connelly
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Brian K. Erickson
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| | - Robert L. Hettich
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131, and Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830
| |
Collapse
|
8
|
Singer SW, Chan CS, Zemla A, VerBerkmoes NC, Hwang M, Hettich RL, Banfield JF, Thelen MP. Characterization of cytochrome 579, an unusual cytochrome isolated from an iron-oxidizing microbial community. Appl Environ Microbiol 2008; 74:4454-62. [PMID: 18469132 PMCID: PMC2493166 DOI: 10.1128/aem.02799-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/26/2008] [Indexed: 11/20/2022] Open
Abstract
A novel, soluble cytochrome with an unusual visible spectral signature at 579 nm (Cyt(579)) has been characterized after isolation from several different microbial biofilms collected in an extremely acidic ecosystem. Previous proteogenomic studies of an Fe(II)-oxidizing community indicated that this abundant red cytochrome could be extracted from the biofilms with dilute sulfuric acid. Here, we found that the Fe(II)-dependent reduction of Cyt(579) was thermodynamically favorable at a pH of >3, raising the possibility that Cyt(579) acts as an accessory protein for electron transfer. The results of transmission electron microscopy of immunogold-labeled biofilm indicated that Cyt(579) is localized near the bacterial cell surface, consistent with periplasmic localization. The results of further protein analysis of Cyt(579), using preparative chromatofocusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed three forms of the protein that correspond to different N-terminal truncations of the amino acid sequence. The results of intact-protein analysis corroborated the posttranslational modifications of these forms and identified a genomically uncharacterized Cyt(579) variant. Homology modeling was used to predict the overall cytochrome structure and heme binding site; the positions of nine amino acid substitutions found in three Cyt(579) variants all map to the surface of the protein and away from the heme group. Based on this detailed characterization of Cyt(579), we propose that Cyt(579) acts as an electron transfer protein, shuttling electrons derived from Fe(II) oxidation to support critical metabolic functions in the acidophilic microbial community.
Collapse
Affiliation(s)
- Steven W Singer
- Chemistry Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jonsson A, Nordlund S. In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum: the transferase activity of R. rubrum GlnD is regulated by alpha-ketoglutarate and divalent cations but not by glutamine. J Bacteriol 2007; 189:3471-8. [PMID: 17337583 PMCID: PMC1855872 DOI: 10.1128/jb.01704-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P(II) proteins have been shown to be key players in the regulation of nitrogen fixation and ammonia assimilation in bacteria. The mode by which these proteins act as signals is by being in either a form modified by UMP or the unmodified form. The modification, as well as demodification, is catalyzed by a bifunctional enzyme encoded by the glnD gene. The regulation of this enzyme is thus of central importance. In Rhodospirillum rubrum, three P(II) paralogs have been identified. In this study, we have used purified GlnD and P(II) proteins from R. rubrum, and we show that for the uridylylation activity of R. rubrum GlnD, alpha-ketoglutarate is the main signal, whereas glutamine has no effect. This is in contrast to, e.g., the Escherichia coli system. Furthermore, we show that all three P(II) proteins are uridylylated, although the efficiency is dependent on the cation present. This difference may be of importance in understanding the effects of the P(II) proteins on the different target enzymes. Furthermore, we show that the deuridylylation reaction is greatly stimulated by glutamine and that Mn(2+) is required.
Collapse
Affiliation(s)
- Anders Jonsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|