1
|
Auger C, Appanna ND, Alhasawi A, Appanna VD. Deciphering metabolic networks by blue native polyacrylamide gel electrophoresis: A functional proteomic exploration. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Mailloux RJ, Lemire J, Appanna VD. Hepatic response to aluminum toxicity: dyslipidemia and liver diseases. Exp Cell Res 2011; 317:2231-8. [PMID: 21787768 DOI: 10.1016/j.yexcr.2011.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Aluminum (Al) is a metal toxin that has been implicated in the etiology of a number of diseases including Alzheimer's, Parkinson's, dialysis encephalopathy, and osteomalacia. Al has been shown to exert its effects by disrupting lipid membrane fluidity, perturbing iron (Fe), magnesium, and calcium homeostasis, and causing oxidative stress. However, the exact molecular targets of aluminum's toxicity have remained elusive. In the present review, we describe how the use of a systems biology approach in cultured hepatoblastoma cells (HepG2) allowed the identification of the molecular targets of Al toxicity. Mitochondrial metabolism is the main site of the toxicological action of Al. Fe-dependent and redox sensitive enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) are dramatically decreased by Al exposure. In an effort to compensate for diminished mitochondrial function, Al-treated cells stabilize hypoxia inducible factor-1α (HIF-1α) to increase ATP production by glycolysis. Additionally, Al toxicity leads to an increase in intracellular lipid accumulation due to enhanced lipogenesis and a decrease in the β-oxidation of fatty acids. Central to these effects is the alteration of α-ketoglutarate (KG) homeostasis. In Al-exposed cells, KG is preferentially used to quench ROS leading to succinate accumulation and HIF-1α stabilization. Moreover, the channeling of KG to combat oxidative stress leads to a reduction of l-carnitine biosynthesis and a concomitant decrease in fatty acid oxidation. The fluidity and interaction of these metabolic modules and the implications of these findings in liver-related disorders are discussed herein.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Laurentian University, Department of Chemistry and Biochemistry, Canada
| | | | | |
Collapse
|
3
|
Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Antonie van Leeuwenhoek 2010; 99:433-42. [PMID: 21153706 DOI: 10.1007/s10482-010-9538-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/26/2010] [Indexed: 12/21/2022]
Abstract
Oxidative stress is an unavoidable peril that aerobic organisms have to confront. Thus, it is not surprising that intricate strategies are deployed in an effort to fend the dangers associated with living in an O(2) environment. In the classical models of anti-oxidative defense mechanisms, a variety of stratagems including the reactive oxygen species (ROS) scavenging systems, the NADPH-generating enzymes and the DNA repair machineries are highlighted. However, it is becoming increasingly clear that metabolism may be intimately involved in anti-oxidative defence. Recent data show that metabolic reprogramming plays a pivotal role in the survival of organisms exposed to oxidative stress. Here, we describe how Pseudomonas fluorescens, the metabolically-versatile soil microbe, manipulates its metabolic networks in an effort to counter oxidative stress. An intricate link between metabolism and anti-oxidative defense is presented. P. fluorescens reconfigures its metabolic processes in an effort to satisfy its need for NADPH during oxidative insult. Seemingly, disparate metabolic modules appear to partner together to concomitantly fine-tune the levels of the anti-oxidant NADPH and the pro-oxidant NADH. Central to this shift in the metabolic production of the pyridine nucleotides is the increase in NAD kinase with the concomitant decrease in NADP phosphatase. The tricarboxylic acid cycle is tweaked in an effort to limit the formation of NADH. This metabolic redox-balancing act appears to afford a potent tool against oxidative challenge and may be a more widespread ROS-combating tactic than hitherto recognized.
Collapse
|
4
|
Wittig I, Schägger H. Native electrophoretic techniques to identify proteinâprotein interactions. Proteomics 2009; 9:5214-23. [DOI: 10.1002/pmic.200900151] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Singh R, Lemire J, Mailloux RJ, Chénier D, Hamel R, Appanna VD. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens. PLoS One 2009; 4:e7344. [PMID: 19809498 PMCID: PMC2752808 DOI: 10.1371/journal.pone.0007344] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/11/2009] [Indexed: 01/05/2023] Open
Abstract
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2)-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2)-limited conditions.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ryan J. Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Daniel Chénier
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robert Hamel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Mailloux RJ, Puiseux-Dao S, Appanna VD. Alpha-ketoglutarate abrogates the nuclear localization of HIF-1alpha in aluminum-exposed hepatocytes. Biochimie 2008; 91:408-15. [PMID: 19028544 DOI: 10.1016/j.biochi.2008.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/28/2008] [Indexed: 12/21/2022]
Abstract
Aluminum (Al), a known environmental pollutant, has been linked to numerous pathologies such as Alzheimer's disease and anaemia. In this study, we show that alpha-ketoglutarate (KG) mitigates the Al-mediated nuclear accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) in cultured human hepatocytes (HepG2). The nuclear localization of HIF-1alpha appeared to be triggered by the Al-induced perturbation of prolyl hydroxylase 2 (PHD2). This enzyme was markedly diminished in the Al-challenged hepatocytes. The fate of PHD2 and HIF-1alpha was intricately linked to the mitochondrial dysfunction observed during Al stress. BN-PAGE, immunoblot, and HPLC revealed that the loss of alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase (SDH) activities were coupled to the accumulation of succinate. However, the treatment of the Al-stressed cells with KG recovered the activity and expression of KGDH, SDH, and PHD2 with a concomitant decrease in the levels of HIF-1alpha in the nucleus. Taken together, these data indicate that the homeostasis of KG plays a pivotal role in aerobic and anaerobic respiration.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | | | | |
Collapse
|
7
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Lemire J, Kumar P, Mailloux R, Cossar K, Appanna VD. Metabolic adaptation and oxaloacetate homeostasis inP. fluorescensexposed to aluminum toxicity. J Basic Microbiol 2008; 48:252-9. [DOI: 10.1002/jobm.200800007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Appl Environ Microbiol 2008; 74:3977-84. [PMID: 18469122 DOI: 10.1128/aem.02702-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Iron (Fe) is a critical element in all aerobic organisms as it participates in a variety of metabolic networks. In this study, aluminum (Al) and gallium (Ga), two Fe mimetics, severely impeded the ability of the soil microbe Pseudomonas fluorescens to perform oxidative phosphorylation. This was achieved by disrupting the activity and expression of complexes I, II, and IV. These toxic metals also inactivated aconitase (ACN) and fumarase A (FUM A), two tricarboxylic acid cycle enzymes dependent on Fe for their catalytic activity, while FUM C, an Fe-independent enzyme, displayed an increase in activity and expression under these stressed situations. Furthermore, in the Al- and Ga-exposed cells, the activity and expression of an H(2)O-forming NADH oxidase were markedly increased. The incubation of the Al- and Ga-challenged cells in an Fe-containing medium led to the recovery of the affected enzymatic activities. Taken together, these data provide novel insights into how environmental pollutants such as Al and Ga interfere with cellular Fe metabolism and also illustrate the ability of Pseudomonas fluorescens to modulate metabolic networks to combat this situation.
Collapse
|
10
|
Lemire J, Mailloux R, Appanna VD. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J Appl Toxicol 2008; 28:175-82. [PMID: 17582580 DOI: 10.1002/jat.1263] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although zinc (Zn) is a known environmental toxicant, its impact on the cellular energy-producing machinery is not well established. This study investigated the influence of this divalent metal on the oxidative ATP producing network in human hepatocellular carcinoma (HepG2) cells. Zn-challenged cells contained more oxidized proteins and lipids compared with control cells. Zn severely impeded mitochondrial functions by inhibiting aconitase, alpha-ketoglutarate dehydrogenase, isocitrate dehydrogenase-NAD+ dependent, succinate dehydrogenase and cytochrome C oxidase Zn-exposed cells had a disparate mitochondrial metabolism compared with the control cells and produced significantly less ATP. However, the expression of isocitrate dehydrogenase-NADP+ dependent was more prominent in cells treated with Zn. Hence, Zn-induced pathologies may be due to the inability of the mitochondria to generate energy effectively.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | | | | |
Collapse
|
11
|
Mailloux RJ, Darwich R, Lemire J, Appanna V. The monitoring of nucleotide diphosphate kinase activity by blue native polyacrylamide gel electrophoresis. Electrophoresis 2008; 29:1484-9. [DOI: 10.1002/elps.200700697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 2008; 12:451-9. [DOI: 10.1007/s00792-008-0150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
13
|
Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2007; 2:e690. [PMID: 17668068 PMCID: PMC1930152 DOI: 10.1371/journal.pone.0000690] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 06/22/2007] [Indexed: 01/08/2023] Open
Abstract
The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH2) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and α-ketoglutarate (KG) is a key participant in the detoxification of reactive oxygen species (ROS). Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH) and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of α-ketoglutarate dehydrogenase (KGDH), NAD-dependent isocitrate dehydrogenase (NAD-ICDH), and succinate dehydrogenase (SDH) were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing.
Collapse
Affiliation(s)
- Ryan J. Mailloux
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robin Bériault
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Daniel R. Chénier
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Robert D. Hamel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 2007; 189:6665-75. [PMID: 17573472 PMCID: PMC2045160 DOI: 10.1128/jb.00555-07] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | | | | | | |
Collapse
|