1
|
Ji X, Ge L, Ma R, Zhang X, Li J, Song D, Pei L, Sun F, Zhao Q. Screening potential ligands of endothelin receptor A from Choerospondias axillaris and evaluation of their drug-like properties by affinity chromatographic methods. J Pharm Biomed Anal 2023; 226:115240. [PMID: 36657350 DOI: 10.1016/j.jpba.2023.115240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Tibetan medicine is traditionally prescribed as crude extracts or mixtures owing to the theoretical basis with cross fertilization from other medical systems like Ayurveda and traditional Chinese medicine. This is challenged to elucidate the action mechanism and material foundation of Tibetan medicine due to lacking a method to confirm the bioactive compounds determining the therapy. This work created a new strategy for screening and evaluating the bioactive compounds against cardiovascular ailments from Choerospondias axillaris. It involved the immobilization of endothelin receptor A (ETAR) by a one-step covalent assay, the screening and identification of the bioactive compounds by ETAR column combined with tandem mass spectrometry, and the evaluation of their drug-like properties by calculating the efficiency indexes using the data collected by frontal analysis and adsorption energy distribution. The immobilized ETAR remained good stability in three weeks in terms of specificity and repeatability. Catechin, pinocembrin, and hyperoside were identified as potential ETAR ligands from Choerospondias axillaris with two types of binding sites on the immobilized receptor. Their association constants on the high and low affinity binding sites were (2.53 ± 0.11) × 105 and (9.94 ± 0.02) × 103 M-1 for catechin, (1.01 ± 0.12) × 106 and (7.40 ± 0.03) × 104 for hyperoside, and (2.05 ± 0.04) × 105 and (2.47 ± 0.09)× 104 M-1 for pinocembrin, respectively. Owing to the highest association constant, hyperoside presented a surface efficiency index of 7.95, and binding efficiency index of 20.7, and the ligand-lipophilicity efficiency of 1.38. These indicated that the three compounds were the main ingredients for the therapy of Choerospondias axillaris, and had potential to become lead compounds for anti-cardiovascular drugs based on drug-ETAR interaction. The immobilized receptor-based strategy is possible to become an alternative for screening and assessing bioactive compounds from Tibetan medicine.
Collapse
Affiliation(s)
- Xu Ji
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China.
| | - Liji Ge
- Affiliated Hospital of Xizang Minzu University, Xianyang 712082, China
| | - Ruixiao Ma
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Xiaoying Zhang
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Jie Li
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Dan Song
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Lingmin Pei
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Fangyun Sun
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Qin Zhao
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China.
| |
Collapse
|
2
|
Liang Q, Shi B, Yao Q, Wang T, Ji X, Zhang Y, Wang J, Zhao X. Early potential evaluation of lead compounds from a DNA-encoded library by the determination of their thermodynamics through a chromatographic method based on immobilized β 2-adrenoceptor. Bioorg Med Chem 2022; 68:116864. [PMID: 35671625 DOI: 10.1016/j.bmc.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Early potential evaluation of lead compounds is critical to decrease downstream lead-optimization cycle times and clinical attrition rates for drug development. This increasingly necessitates the methodologies for accurately evaluating the potential compounds. This work immobilized β2-adrenoceptor (β2-AR) onto microspheres through Halo-tag mediated reaction. Characterizing the resulting microspheres by elemental and functional analysis, we utilized the immobilized receptor to determine the thermodynamics of terbutaline, tulobuterol, clorprenaline, salbutamol, and methoxyphenamine. The association constants correlated to their capacity factors on the column containing the immobilized β2-AR, thus providing a possibility for early potential evaluation of lead compounds from complex matrices like a DNA-encoded library. By this model, the lead compound (XC267) was predicted to have an association constant higher than terbutaline, salbutamol, and methoxyphenamine, but lower than tulobuterol and clorprenaline. The binding interaction between XC267 and β2-AR is a spontaneous endothermic process with an association constant of (6.62 ± 0.13) × 104 M-1 at 37 °C. The change of Gibbs free energy(ΔGθ), enthalpy change (ΔHθ), and entropy change (ΔSθ) was -28.49 kJ/mol, -10.58 kJ/mol, and 57.79 J/moL·K at 37 °C. By the semi-empirical rule of Ross, the driving force of the interaction between XC267 and β2-AR was electrostatic interaction. Such binding force was also achieved by molecular docking. These results suggested that XC267 is a candidate to treat asthma by specific binding to β2-AR. We reasoned that receptor chromatography is able to the early potential evaluation of lead compounds from complex matrices.
Collapse
Affiliation(s)
- Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bowen Shi
- Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Qingqing Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Taotao Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Yajun Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Xu R, Cheng P, Meng K, Li L, Jiao M, Zhao X, Jia P, Zheng X, Xiao C. Extracellular domain of human calcium sensing receptor immobilized to silica beads as biomaterial: a rapid chromatographic method for recognizing ligands from complex matrix ‘Shuangdan’. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123409. [DOI: 10.1016/j.jchromb.2022.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
4
|
Shayiranbieke A, Liang Q, Wang T, Ma J, Li G, Du X, Zhang G, Wang C, Zhao X. Development of immobilized beta1-adrenoceptor chromatography for rapid discovery of ligands specifically binding to the receptor from herbal extract. J Chromatogr A 2022; 1677:463298. [DOI: 10.1016/j.chroma.2022.463298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
|
5
|
Sun J, Zhang C. Screening the bioactive compound from Coptis chinensis inflorescence by immobilized Peroxisome proliferator activated receptor gamma. J Sep Sci 2022; 45:2855-2864. [PMID: 35671063 DOI: 10.1002/jssc.202101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
Coptis chinensis inflorescence is a by-product of Coptis chinensis Franch and riches in alkaloids. We screened the bioactive compounds in the by-product through an immobilized peroxisome proliferator-activated receptor gamma. The receptor was covalently immobilized on the macroporous silica gel through amino groups to generate the affinity stationary phase and was applied for screening. Berberine, palmatine, and jatrorrhizine were identified as the retained components of the herb on the affinity column. We evaluated the binding of the three bioactive compounds with the receptor by nonlinear chromatography and molecular docking. The affinities of the compounds to the receptor were (1.42±0.10) ×108 M-1 , (4.88±0.38) ×107 M-1 , and (1.65±0.13) ×107 M-1 for berberine, palmatine, and jatrorrhizine, with dissociation rate constants of (17.70±0.03) ×10-3 S-1 , (5.18±0.25) ×10-2 S-1 , and (15.7±0.05) ×10-2 S-1 , respectively. Cys285, Arg288, Ile326, Leu330, and His449 in the agonist binding pocket of the receptor participated in the formation of bioactive compound-receptor conjugates. These data indicated that the immobilized receptor is a reliable alternative for screening the bioactive compounds. In addition, Coptis chinensis inflorescence has the potential to be a source for drug discovery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jingchun Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B 2022; 12:3682-3693. [PMID: 36176904 PMCID: PMC9513493 DOI: 10.1016/j.apsb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with KD values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
Collapse
|
7
|
Recent advances in cell membrane-coated technology for drug discovery from natural products. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Yuan X, Shayiranbieke A, Xu R, Jiang H, Yang Y, Zhang Y, Yin G, Zhao X. Site-selective covalently immobilized alpha 1A adrenergic receptor for thermodynamic and extra-thermodynamic study of four ligands binding to the receptor by chromatographic methods. J Chromatogr A 2022; 1665:462827. [DOI: 10.1016/j.chroma.2022.462827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
|
9
|
Zhao X, Fu X, Yuan X, Shayiranbieke A, Xu R, Cao F, Ren J, Liang Q, Zhao X. Development and characterization of a selective chromatographic approach to the rapid discovery of ligands binding to muscarinic-3 acetylcholine receptor. J Chromatogr A 2021; 1653:462443. [PMID: 34365202 DOI: 10.1016/j.chroma.2021.462443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The pursuit of new ligands binding to muscarinic-3 acetylcholine receptor (M3R) is viewed as challenging due to the lack of screening methods with high efficiency. To address such challenges, this work developed and characterized an approach to the rapid discovery of M3R ligands using the immobilized receptor as the chromatographic stationary phase. We fused haloalkane dehalogenase (Halo) as a tag at the C-terminus of M3R. The fusion M3R was immobilized on 6-chlorocaproic acid-activated ammino-microspheres by the specific covalent reaction between the Halo-tag and the linker. Comprehensive characterizations of the immobilized M3R were performed by scanning electron microscope, X-ray photoelectron spectroscopy, and the investigation on the binding of three specific ligands to the receptor. The feasibility of the immobilized M3R in complex matrices was tested by screening the bioactive compounds in Zhisou oral liquid, assessing the interaction between the screened compounds and the receptor using zonal elution, and evaluating the in vivo activity of the targeted compounds. The results evidenced that the immobilized M3R has high specificity, good stability, and the capacity to separate M3R ligands from complex matrices. These allowed us to identify naringin, hesperidin, liquiritigenin, platycodin D, and glycyrrhizic acid as the potential ligands of M3R. The association constants of the five compounds to M3R were 4.44 × 104, 1.11 × 104, 7.20 × 104, 4.15 × 104, and 3.36 × 104 M-1. The synergistic application of the five compounds exhibited an equivalent expectorant activity to the original formula. We reasoned that the current method is possible to provide a highly efficient strategy for the discovery of receptor ligands.
Collapse
Affiliation(s)
- Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Ru Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Fang Cao
- Shaanxi Pharmaceutical Holding Group Shanhaidan Pharmaceutical Co., Ltd., Xi'an 710075, China
| | - Jianping Ren
- Medicine Researchinstitution of Shaanxi Pharmaceutical Holding Cooperation, Xi'an 710065, China
| | - Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Fu X, Zhao X, Zheng X, Wang T, Shayiranbieke A, Li L, Cao F, Ren J, Li Q, Zhao X. Rapidly identifying bioactive compounds from Zhisou oral liquid by immobilized receptor-based high-performance affinity chromatography. J Sep Sci 2021; 44:3219-3228. [PMID: 34212514 DOI: 10.1002/jssc.202100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022]
Abstract
The identification of bioactive compounds in complex matrices remains a major challenge due to the lack of highly efficient and specific methods. This work developed an approach based on high-performance affinity chromatography to identify the potential antitussive compounds from Zhisou oral liquid . The main methods include the synthesis of immobilized beta2-adrenoceptor by a one-step method, the screening and identification of the potential bioactive compounds by the receptor column coupled with mass spectrometry, and the binding mechanism analysis of the compounds to the receptor by the in vivo experiment, injection amount dependent method and molecular simulation. We identified the potential bioactive compounds of Zhisou oral liquid as glycyrrhizic acid, platycodin D, tuberostemonine, and hesperidin. In vivo experiment showed that the combinational utilization of the four compounds was possible to present an equivalent antitussive effect to the formula. The docking results demonstrated that hydrogen bonds and Van der Waals forces were the main forces to drive the binding of the four compounds to beta2-adrenoceptor. We concluded that the four compounds are the effective components in Zhisou oral liquid. The proposed strategy is possible to provide an alternative for the development of highly efficient methods to pursue the bioactive compounds of complex matrices.
Collapse
Affiliation(s)
- Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xinxin Zheng
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Taotao Wang
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | | | - Linkang Li
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Fang Cao
- Shaanxi Pharmaceutical Holding Group Shanhaidan Pharmaceutical Co., Ltd., Xi'an, P. R. China
| | - Jianping Ren
- Medicine Research Institution of Shaanxi Pharmaceutical Holding Cooperation, Xi'an, P. R. China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an, P. R. China
| |
Collapse
|
11
|
Liang Q, Zhao X, Fu X, Wang J, Li Q, Zhao X. Identification of selective ligands targeting two GPCRs by receptor-affinity chromatography coupled with high-throughput sequencing techniques. Bioorg Chem 2021; 112:104986. [PMID: 34029972 DOI: 10.1016/j.bioorg.2021.104986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
The rapid growth of demands for drug discovery has necessitated the ongoing pursuit of new methods for specific ligands screening and identification. This work combined receptor-affinity chromatography (RAC) with high-throughput sequencing techniques to rapidly screen and identify the specific ligands. By this method, immobilized angiotensin II type I receptor (AT1R) and endothelin receptor A (ETAR) based on RAC were utilized for lead screening from a DNA-encoded library. The specific ligands of AT1R (ligand A1, A2) and ETAR (ligand B1, B2) were synthesized after decoding by high-throughput sequencing techniques. The dissociation rate constants (kd) of ligand A1, A2 to AT1R and B1, B2 to ETAR were 9.65 × 10-4, 31.1 × 10-4 and 0.66, 1.22 s-1 by peak profiling assay. The association constant (KA) to the receptors of four ligands was 5.4 × 106, 3.3 × 106 and 1.6 × 106, 2.2 × 105 by injection amount dependent method. The kinetic and thermodynamic parameters of the four specific ligands are similar to those of the positive drugs. This indicates that they are promising to drug candidates. The druggability of the four ligands through pharmacokinetic investigation by HPLC-MS/MS presented desired pharmacokinetic behavior including the fast absorption, the relatively slow elimination. These results, taking together, indicated that the RAC combined with high-throughput sequencing techniques can screen and identify the specific ligands according to various proteins, thus creating a general strategy for rapid discovery of promising drug candidates.
Collapse
Affiliation(s)
- Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
12
|
Woolfork AG, Iftekhar S, Ovbude S, Suh K, Sharmeen S, Kyei I, Jones J, Hage DS. Recent Advances in Supramolecular Affinity Separations: Affinity Chromatography and Related Methods. ADVANCES IN CHROMATOGRAPHY 2021; 58:1-74. [PMID: 36186535 PMCID: PMC9520669 DOI: 10.1201/9781003223405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.
Collapse
Affiliation(s)
- Ashley G. Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Jacob Jones
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| |
Collapse
|
13
|
Liang Q, Fu X, Zhang J, Hao J, Feng G, Wang J, Li Q, Ahmad F, Zhao X. Immobilized angiotensin II type I receptor: A powerful method of high throughput screening for antihypertensive compound identification through binding interaction analysis. J Chromatogr A 2020; 1620:461003. [PMID: 32156458 DOI: 10.1016/j.chroma.2020.461003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
The enormous growth in drug discovery paradigm has necessitated continuous exploration of new methods for drug-protein interaction analysis. To enhance the role of these methodologies in designing rational drugs, this work extended an immobilized angiotensin II type I receptor (AT1R) based affinity chromatography in antihypertensive compound identification. We fused haloalkane dehalogenase at C-terminus of AT1R and expressed the fusion receptor in E. coli. The expressed receptor was covalently immobilized onto 8.0 μm microspheres by mixing the cell lysate with 6-chlorocaproic acid-modified amino polystyrene microspheres. The immobilized AT1R was utilized for thermodynamic and kinetic interaction analysis between the receptor and four specific ligands. Following confirmation of these interactions by molecular docking, we identified puerarin and rosmarinic acid by determining their binding to the receptor. Azilsartan, candesartan, valsartan and olmesartan displayed two kinds of binding sites to AT1R by injection amount-dependent method. By molecular docking, we recognize the driving forces of the interaction as electrostatic interaction, hydrogen bonds and van der Waals force. The dissociation rate constants (kd) of azilsartan, candesartan, valsartan and olmesartan to AT1R were 0.01138 ± 0.003, 0.05142 ± 0.003, 0.07547 ± 0.004 and 0.01310 ± 0.005 min-1 by peak profiling assay. Comparing with these parameters, puerarin and rosmarinic acid presented lower affinity (KA: 0.12 × 104 and 1.5 × 104/M) and slower kinetics (kd: 0.6864 ± 0.03 and 0.3005 ± 0.01 min-1) to the receptor. These results, taking together, indicated that the immobilized AT1R has the capacity to probe antihypertensive compounds.
Collapse
Affiliation(s)
- Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi'an City, Xi'an 710061, China
| | - Jiaxue Hao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Gangjun Feng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Faizan Ahmad
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
15
|
Deng B, Gan Y, Zhang M, Ye L. Determination of Pharmaceuticals by Dynamic Cell Membrane Chromatography Coupled with High-Performance Liquid Chromatography. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1374392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Binge Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuan Gan
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meng Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liming Ye
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Cieśla Ł, Moaddel R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep 2016; 33:1131-45. [PMID: 27367973 PMCID: PMC5042860 DOI: 10.1039/c6np00016a] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: 2000 to 2016Natural product extracts are a rich source of bioactive compounds. As a result, the screening of natural products for the identification of novel biologically active metabolites has been an essential part of several drug discovery programs. It is estimated that more than 70% of all drugs approved from 1981 and 2006, were either derived from or structurally similar to nature based compounds indicating the necessity for the development of a rapid method for the identification of novel compounds from plant extracts. The screening of biological matrices for the identification of novel modulators is nevertheless still challenging. In this review we discuss current techniques in phytochemical analysis and the identification of biologically active components.
Collapse
Affiliation(s)
- Łukasz Cieśla
- Laboratory of Clinical Investigation, Biomedical Research Center, 8C232, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
17
|
|
18
|
Han S, Li C, Huang J, Wei F, Zhang Y, Wang S. Cell membrane chromatography coupled with UHPLC-ESI-MS/MS method to screen target components from Peucedanum praeruptorum Dunn acting on α1A adrenergic receptor. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1011:158-62. [PMID: 26773893 DOI: 10.1016/j.jchromb.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022]
Abstract
Peucedanum praeruptorum Dunn (BaiHuaQianHu in Chinese) is a traditional Chinese medicine that has a long history of use in China. In this study, HEK 293 α1A adrenergic cell membrane chromatography was coupled with UHPLC-ESI-MS/MS and successfully used to identify active components from Peucedanum praeruptorum Dunn. Paeruptorin A, paeruptorin B, and paeruptorin C were identified with α1A adrenergic receptor activity. Pharmacological assays showed that tamsulosin hydrochloride, paeruptorin A, paeruptorin B, and paeruptorin C in concentrations of 1×10(-8) to 1×10(-4)mol/mL could relax prostate strips pre-contracted with adrenalin in a concentration dependent manner. Therefore, the HEK293 α1A cell membrane chromatography coupled UHPLC-ESI-MS/MS system may be a potentially useful drug discovery method for screening for medicinal herbal components with α1A adrenergic receptor inhibitory activity.
Collapse
Affiliation(s)
- Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Chunlei Li
- Department of Pharmacy, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, PR China
| | - Jing Huang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Fen Wei
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Yu Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, Shaanxi, PR China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
19
|
Singh NS, Habicht KL, Dossou KSS, Shimmo R, Wainer IW, Moaddel R. Multiple protein stationary phases: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:64-8. [PMID: 24780640 PMCID: PMC4127356 DOI: 10.1016/j.jchromb.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Cellular membrane affinity chromatography stationary phases have been extensively used to characterize immobilized proteins and provide a direct measurement of multiple binding sites, including orthosteric and allosteric sites. This review will address the utilization of immobilized cellular and tissue fragments to characterize multiple transmembrane proteins co-immobilized onto a stationary phase. This approach will be illustrated by demonstrating that multiple transmembrane proteins were immobilized from cell lines and tissue fragments. In addition, the immobilization of individual compartments/organelles within a cell will be discussed and the changes in the proteins binding/kinetics based on their location.
Collapse
Affiliation(s)
- N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - K-L Habicht
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - K S S Dossou
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Takaku T, Mikata K, Nagahori H, Sogame Y. Identification of metabolites of propyrisulfuron in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:64-71. [PMID: 24631812 DOI: 10.1016/j.jchromb.2014.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
The metabolites found in the urine, feces and bile of male and female rats administered with (14)C-labeled herbicide, propyrisulfuron [1-(2-chloro-6-propylimidazo[1,2-b]pyridazin-3-ylsulfonyl)-3- (4,6-dimethoxypyrimidin-2-yl)urea] were identified by high-performance liquid chromatography (HPLC) with the ultraviolet (UV) and radioisotope (RI) detectors, tandem mass spectrometry and nuclear magnetic resonance (NMR). Administered (14)C was excreted into the urine (5.7-29.8%) and feces (64.6-97.4%). Urine and bile samples were concentrated and purified using a solid-phase extraction cartridge, and fecal homogenates were extracted using acetonitrile. Conjugates were hydrolyzed with enzyme or hydrochloric acid solution for identification. The proposed major metabolic reactions of propyrisulfuron are as follows: (1) hydroxylation of the pyrimidine ring, propyl group, and imidazopyridazine ring, (2) O-demethylation, (3) cleavage of the pyrimidine ring, and (4) glucuronic acid and sulfate conjugation. The metabolic patterns found are not different among sulfonylurea herbicides.
Collapse
Affiliation(s)
- Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan.
| | - Kazuki Mikata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Yoshihisa Sogame
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| |
Collapse
|
21
|
Habicht KL, Singh NS, Khadeer MA, Shimmo R, Wainer IW, Moaddel R. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns. J Chromatogr A 2014; 1339:80-85. [PMID: 24642394 DOI: 10.1016/j.chroma.2014.02.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.
Collapse
Affiliation(s)
- K-L Habicht
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.,Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia
| | - N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - M A Khadeer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Temporini C, Pochetti G, Fracchiolla G, Piemontese L, Montanari R, Moaddel R, Laghezza A, Altieri F, Cervoni L, Ubiali D, Prada E, Loiodice F, Massolini G, Calleri E. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with mass spectrometry detection. J Chromatogr A 2013; 1284:36-43. [PMID: 23466198 PMCID: PMC3618287 DOI: 10.1016/j.chroma.2013.01.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/23/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening toward PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of frontal affinity chromatography coupled to mass spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments toward new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes.
Collapse
Affiliation(s)
- C. Temporini
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italia
| | - G. Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italia
| | - G. Fracchiolla
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italia
| | - L. Piemontese
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italia
| | - R. Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italia
| | - R. Moaddel
- Biomedical Research Center, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - A. Laghezza
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italia
| | - F. Altieri
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università di Roma "La Sapienza", 00185 Roma, Italia
| | - L. Cervoni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università di Roma "La Sapienza", 00185 Roma, Italia
| | - D. Ubiali
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italia
| | - E. Prada
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italia
| | - F. Loiodice
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italia
| | - G. Massolini
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italia
| | - E. Calleri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italia
| |
Collapse
|
23
|
Yakufu P, Qi H, Li M, Ling X, Chen W, Wang Y. CCR4 expressing cells cultured adherently on a capillary wall and formaldehyde fixed as the stationary phase for ligand screening by ACE. Electrophoresis 2013. [DOI: 10.1002/elps.201200376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pazilaiti Yakufu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Hui Qi
- Center for Human Disease Genomics and Department of Medical Immunology of School of Basic Medical Science; Peking University; Beijing; P. R. China
| | - Meina Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Xiaomei Ling
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Wenjing Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences; Peking University; Beijing; P. R. China
| | - Ying Wang
- Center for Human Disease Genomics and Department of Medical Immunology of School of Basic Medical Science; Peking University; Beijing; P. R. China
| |
Collapse
|
24
|
Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS. Anal Bioanal Chem 2012; 405:837-45. [PMID: 22960794 DOI: 10.1007/s00216-012-6353-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 12/26/2022]
Abstract
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing A(2A) adenosine receptor (A(2A)AR) is firstly described. Cellular membranes from CHO cells stably transfected with human A(2A)AR vector (A(2A)(+)) and from the same cell line transfected with the corresponding empty vector (A(2A)(-)) were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6 mm I.D. glass columns to create A(2A)(+)-IAM and A(2A)(-)-IAM stationary phases. Frontal chromatography experiments on both A(2A)(+)-IAM and A(2A)(-)-IAM columns demonstrated the presence of a low specific interaction with the receptor. However, immobilized A(2A) retained its ability to specifically bind known ligands as demonstrated by the agreement of the calculated K(d) values with two different chromatographic protocols in comparison to previously reported data. In order to maximize the specific interaction, the same cellular membranes were immobilized on the inner surface of a silica capillary (40 cm × 100 μm I.D.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns A(2A)(+)-OT and A(2A)(-)-OT. The open tubular system was characterized by ranking experiments for affinity studies in mixture useful for the selection of new potential candidates.
Collapse
|
25
|
Immobilized enzyme reactors in HPLC and its application in inhibitor screening: A review. J Pharm Anal 2011; 2:83-89. [PMID: 29403726 PMCID: PMC5760896 DOI: 10.1016/j.jpha.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/22/2011] [Indexed: 11/21/2022] Open
Abstract
This paper sets out to summarize the literatures based on immobilized enzyme bio-chromatography and its application in inhibitors screening in the last decade. In order to screen enzyme inhibitors from a mass of compounds in preliminary screening, multi-pore materials with good biocompatibility are used for the supports of immobilizing enzymes, and then the immobilized enzyme reactor applied as the immobilized enzyme stationary phase in HPLC. Therefore, a technology platform of high throughput screening is gradually established to screen the enzyme inhibitors as new anti-tumor drugs. Here, we briefly summarize the selective methods of supports, immobilization techniques, co-immobilized enzymes system and the screening model.
Collapse
|
26
|
Frontal affinity chromatography in characterizing immobilized receptors. J Pharm Biomed Anal 2011; 54:911-25. [DOI: 10.1016/j.jpba.2010.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/20/2022]
|
27
|
Simultaneous Screening and Chemical Characterization of Bioactive Compounds Using LC-MS-Based Technologies (Affinity Chromatography). THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/978-3-642-18384-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Calleri E, Ceruti S, Cristalli G, Martini C, Temporini C, Parravicini C, Volpini R, Daniele S, Caccialanza G, Lecca D, Lambertucci C, Trincavelli ML, Marucci G, Wainer IW, Ranghino G, Fantucci P, Abbracchio MP, Massolini G. Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor. J Med Chem 2010; 53:3489-501. [PMID: 20394377 DOI: 10.1021/jm901691y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of frontal affinity chromatography-mass spectrometry (FAC-MS), along with molecular modeling studies, to the screening of potential drug candidates toward the recently deorphanized G-protein-coupled receptor (GPCR) GPR17 is shown. GPR17 is dually activated by uracil nucleotides and cysteinyl-leukotrienes, and is expressed in organs typically undergoing ischemic damage (i.e., brain, heart and kidney), thus representing a new pharmacological target for acute and chronic neurodegeneration. GPR17 was entrapped on an immobilized artificial membrane (IAM), and this stationary phase was used to screen a library of nucleotide derivatives by FAC-MS to select high affinity ligands. The chromatographic results have been validated with a reference functional assay ([(35)S]GTPgammaS binding assay). The receptor nucleotide-binding site was studied by setting up a column where a mutated GPR17 receptor (Arg255Ile) has been immobilized. The chromatographic behavior of the tested nucleotide derivatives together with in silico studies have been used to gain insights into the structure requirement of GPR17 ligands.
Collapse
Affiliation(s)
- Enrica Calleri
- Department of Pharmaceutical Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Broch-Lips M, Pedersen TH, Nielsen OB. Effect of purinergic receptor activation on Na+-K+ pump activity, excitability, and function in depolarized skeletal muscle. Am J Physiol Cell Physiol 2010; 298:C1438-44. [PMID: 20457838 DOI: 10.1152/ajpcell.00361.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity-induced elevation of extracellular purines and pyrimidines has been associated with autocrine and paracrine signaling in many tissues. Here we investigate the effect of purinergic signaling for the excitability and contractility of depolarized skeletal muscle. Muscle excitability was experimentally depressed by elevating the extracellular K(+) from 4 to 10 mM, which reduced the tetanic force to 24 +/- 2% of the force at 4 mM K(+). Upon addition of 1 mM ATP, however, the force recovered to 65 +/- 8% of the control force (P < 0.001, n = 5). A similar recovery was seen with ADP, but not with UTP or adenosine. The ATP-induced force recovery could be inhibited by P2Y(1) receptor antagonists (3 muM SCH-202676 or 1 muM MRS-2500). A fourfold increase in M-wave area demonstrated that the ATP-induced force recovery was associated with restoration of muscle excitability (P < 0.05, n = 4). Experiments using (86)Rb(+) as a tracer for K(+) showed that ATP also induced a twofold increase in the activity of muscle Na(+)-K(+) pumps. The force recovery and the stimulation of the Na(+)-K(+) pump activity by ATP were inhibited by 50 muM of the phospholipase C inhibitor U-73122. It is concluded that purinergic signaling can increase the Na(+)-K(+) pump activity and improve force and excitability of depolarized skeletal muscles. This novel purinergic regulation may be important for the maintenance of muscle excitability during intense exercise, where the extracellular K(+) can increase substantially.
Collapse
Affiliation(s)
- Martin Broch-Lips
- Department of Physiology and Biophysics, Aarhus University, Denmark.
| | | | | |
Collapse
|
30
|
Bhatia PA, Moaddel R, Wainer IW. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells. Talanta 2010; 81:1477-81. [PMID: 20441926 DOI: 10.1016/j.talanta.2010.02.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/20/2010] [Indexed: 12/14/2022]
Abstract
CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.
Collapse
Affiliation(s)
- Prateek A Bhatia
- National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224-6825, USA
| | | | | |
Collapse
|
31
|
Moaddel R, Musyimi HK, Sanghvi M, Bashore C, Frazier CR, Khadeer M, Bhatia P, Wainer IW. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y(1) receptors: a multiple G-protein coupled receptor column. J Pharm Biomed Anal 2009; 52:416-9. [PMID: 19608372 DOI: 10.1016/j.jpba.2009.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/18/2022]
Abstract
A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y(1) receptor. The CMAC(1321N1(P2Y1)) column contained functional P2Y(1) and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1(P2Y1)) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding.
Collapse
Affiliation(s)
- Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, United States.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Calleri E, Temporini C, Caccialanza G, Massolini G. Target-Based Drug Discovery: the Emerging Success of Frontal Affinity Chromatography Coupled to Mass Spectrometry. ChemMedChem 2009; 4:905-16. [DOI: 10.1002/cmdc.200800436] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Moaddel R, Wainer IW. The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 2009; 4:197-205. [PMID: 19180089 PMCID: PMC4605383 DOI: 10.1038/nprot.2008.225] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membrane affinity chromatography is a technique that is based on the immobilization of a target trans-membrane protein onto a stationary phase. The target protein is isolated by homogenization and solubilization of a source (e.g., cell line) followed by immobilization on either the immobilized artificial membrane-phosphatidyl choline (IAM-PC) stationary phase or the surface of an open tubular capillary during a dialysis step. The procedure typically takes 3-4 d for the IAM-PC stationary phase, whereas the open-tubular method takes an extra week for the preparation of the capillary. The resulting columns can then be used to characterize binding sites on the target protein through frontal chromatographic and/or nonlinear chromatographic studies using a wide variety of ligands including small molecules and polypeptides. The columns have been used in drug discovery as well as in the screening of tobacco smoke condensates.
Collapse
Affiliation(s)
- Ruin Moaddel
- Laboratory of Clinical Investigation, Gerontology Research Center, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
34
|
Bhatia P, Kolinski M, Moaddel R, Jozwiak K, Wainer IW. Determination and modelling of stereoselective interactions of ligands with drug transporters: a key dimension in the understanding of drug disposition. Xenobiotica 2008; 38:656-75. [PMID: 18668426 DOI: 10.1080/00498250802109207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Stereochemistry is an important dimension in pharmacology and plays a role in every aspect of the pharmacological fate of chiral xenobiotics. This includes small molecule-drug transporter binding. 2. This paper reviews the reported stereoselectivities of substrate and inhibitor interactions with P-glycoprotein and the organic cation transporter obtained using standard functional and binding studies, as well as data obtained from online cellular membrane affinity chromatography studies. 3. The use of stereochemical data in quantitative structure-activity relationship (QSAR) and pharmacophore modelling is also addressed as is the effect of ignoring the fact that small molecule-drug transporter interactions take place in three-dimensional and asymmetric space.
Collapse
Affiliation(s)
- P Bhatia
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | |
Collapse
|
35
|
Nie YL, Wang WH. Immobilized Enzyme Reactor in On-line LC and Its Application in Drug Screening. Chromatographia 2008. [DOI: 10.1365/s10337-008-0791-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Kitabatake T, Moaddel R, Cole R, Gandhari M, Frazier C, Hartenstein J, Rosenberg A, Bernier M, Wainer IW. Characterization of a multiple ligand-gated ion channel cellular membrane affinity chromatography column and identification of endogenously expressed receptors in astrocytoma cell lines. Anal Chem 2008; 80:8673-80. [PMID: 18847217 DOI: 10.1021/ac8016407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cellular membranes obtained from the 1321N1 and A172 astrocytoma cell lines were immobilized on a chromatographic phase to create cellular membrane affinity chromatography (CMAC) columns, CMAC(1321N1) and CMAC(A172). The columns were characterized using frontal affinity chromatography with [(3)H]-epibatidine as the marker ligand and epibatidine, nicotine, and methyllycaconitine as the displacers. The results indicated that the columns contained homomeric alpha7 nicotinic acetylcholine receptors (alpha7 nAChR) and heteromeric nicotinic acetylcholine receptors (alpha(x)beta(y) nAChRs), which was confirmed by the addition of subtype-specific inhibitors, alpha-bungarotoxin (alpha7 nAChR) and kappa-bungarotoxin (alpha(x)beta(y) nAChR) to the mobile phase. The presence of two additional ligand-gated ion channels (LGICs), gamma-aminobutyric acid (GABA(A)) and N-methyl-D-aspartic acid (NMDA), was established using frontal affinity chromatography with flunitrazepam and diazepam (GABA(A) receptor) and MK-801 and NMDA (NMDA receptor). The presence of the four LGICs was confirmed using confocal microscopy and flow cytometry. The results indicate that the CMAC(1321N1) and CMAC(A172) columns contain four independently functioning LGICs, that the columns can be used to characterize binding affinities of small molecules to each of the receptors, and that the CMAC approach can be used to probe the expression of endogenous membrane receptors.
Collapse
Affiliation(s)
- T Kitabatake
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Development of an immobilized GPR17 receptor stationary phase for binding determination using frontal affinity chromatography coupled to mass spectrometry. Anal Biochem 2008; 384:123-9. [PMID: 18835238 DOI: 10.1016/j.ab.2008.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022]
Abstract
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing the P2Y-like receptor GPR17 is described. Cellular membranes from 1321N1 cells transiently transfected with GPR17 vector [GPR17+] and from the same cell line transfected with the corresponding empty vector [GPR17(-)] were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6-mm-i.d. glass columns to create GPR17(+)-IAM and GPR17(-)-IAM stationary phases. Frontal chromatography experiments on both GPR17(+)-IAM and GPR17(-)-IAM demonstrated the presence of a specific interaction with GPR17 only in the former that was maximized by increasing the membrane/IAM ratio. GPR17(+)-IAM was used in frontal affinity chromatography experiments to calculate the dissociation constants (K(d)) of three ligands-the antagonist cangrelor (formerly AR-C69931MX, a P2Y(12)/P2Y(13) antagonist), MRS2179 (a P2Y(1) receptor antagonist), and the agonist UDP-all of which have been reported to also interact with GPR17. Immobilized GPR17 retained its ability to specifically bind the three analytes, as demonstrated by the agreement of the calculated K(d) values with previously reported data. Preliminary ranking experiments suggest the application of GPR17(+)-IAM in ranking affinity studies for the selection of new potential candidates.
Collapse
|
38
|
Jonker N, Kool J, Krabbe JG, Retra K, Lingeman H, Irth H. Screening of protein–ligand interactions using dynamic protein-affinity chromatography solid-phase extraction–liquid chromatography–mass spectrometry. J Chromatogr A 2008; 1205:71-7. [DOI: 10.1016/j.chroma.2008.07.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 11/29/2022]
|
39
|
Wainer IW. Investigation of molecular recognition in biological systems using cellular membrane affinity chromatography. CHIMICA OGGI 2008; 26:19-22. [PMID: 19430544 PMCID: PMC2678806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cellular membrane affinity chromatography (CMAC) columns have been created through the immobilization of cellular membrane fragments on liquid chromatographic supports. A CMAC column containing the human organic cation transporter, CMAC(hOCT1) column, has been used to study the stereoselective binding of competitive inhibitors. The chromatographic data obtained using the CMAC(hOCT1) column was to develop a pharmacophore model that described the stereoselectivity. The results indicate that a dynamic chiral recognition model based upon conformational adjustments between the inhibitors and hOCT1 is responsible for the observed steroeselectivity.
Collapse
|
40
|
Moaddel R, Oliveira RV, Kimura T, Hyppolite P, Juhaszova M, Xiao Y, Kellar KJ, Bernier M, Wainer IW. Initial synthesis and characterization of an alpha7 nicotinic receptor cellular membrane affinity chromatography column: effect of receptor subtype and cell type. Anal Chem 2007; 80:48-54. [PMID: 18062706 DOI: 10.1021/ac701943b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, cellular membrane fragments from SH-EP1-pCEP4-halpha7 and alpha7 HEK-293 cell lines were used to synthesize cellular membrane affinity chromatography (CMAC) columns containing functional alpha7 nicotinic acetylcholine receptors, CMAC(alpha7 nAChR) columns. The synthesis of stable columns required the addition of cholesterol to the 2% cholate solubilization/immobilization (s/i) buffer and to the mobile phase. In addition, when membranes from the SH-EP1 cell line were used, l-alpha-phosphatidylserine and l-alpha-phosphatidylethanolamine also had to be added to the s/i buffer. A CMAC(alpha4beta2 nAChR) column was prepared using membrane fragments from a SH-EP1-pCEP4-halpha4beta2 cell line, and this process required the addition of l-alpha-phosphatidylserine and l-alpha-phosphatidylethanolamine to the s/i buffer, but not cholesterol. The s/i buffers from the three columns were compared with the s/i buffer utilized in the preparation of a CMAC(alpha4beta2 nAChR) column prepared using an alpha4beta2 HEK-293 cell line, which required no additions to the 2% cholate s/i buffer. The data demonstrate that both cell type and receptor type affect the protocol required to produce a stable CMAC column and that, at the current time, the development of an optimum immobilization protocol is an empirical process. The results are also consistent with the observation that the alpha7 nAChR is localized in lipid rafts in both of these cell lines and that the cholate detergent removed cholesterol from these microdomains.
Collapse
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, National Institutes on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|