1
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
2
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
3
|
Galvin J, Curran E, Arteaga F, Goossens A, Aubuchon-Endsley N, McMurray MA, Moore J, Hansen KC, Chial HJ, Potter H, Brodsky JL, Coughlan CM. Proteasome activity modulates amyloid toxicity. FEMS Yeast Res 2022; 22:foac004. [PMID: 35150241 PMCID: PMC8906389 DOI: 10.1093/femsyr/foac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is responsible for 60%-80% of identified cases of dementia. While the generation and accumulation of amyloid precursor protein (APP) fragments is accepted as a key step in AD pathogenesis, the precise role of these fragments remains poorly understood. To overcome this deficit, we induced the expression of the soluble C-terminal fragment of APP (C99), the rate-limiting peptide for the generation of amyloid fragments, in yeast that contain thermosensitive mutations in genes encoding proteasome subunits. Our previous work with this system demonstrated that these proteasome-deficient yeast cells, expressing C99 when proteasome activity was blunted, generated amyloid fragments similar to those observed in AD patients. We now report the phenotypic repercussions of inducing C99 expression in proteasome-deficient cells. We show increased levels of protein aggregates, cellular stress and chaperone expression, electron-dense accumulations in the nuclear envelope/ER, abnormal DNA condensation, and an induction of apoptosis. Taken together, these findings suggest that the generation of C99 and its associated fragments in yeast cells with compromised proteasomal activity results in phenotypes that may be relevant to the neuropathological processes observed in AD patients. These data also suggest that this yeast model should be useful for testing therapeutics that target AD-associated amyloid, since it allows for the assessment of the reversal of the perturbed cellular physiology observed when degradation pathways are dysfunctional.
Collapse
Affiliation(s)
- John Galvin
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Elizabeth Curran
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Francisco Arteaga
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Alicia Goossens
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Nicki Aubuchon-Endsley
- Department of Biological Sciences, University of Denver , Denver CO 80208, United States
| | - Michael A McMurray
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jeffrey Moore
- Department of Cell and Developmental Biology, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Heidi J Chial
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Huntington Potter
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Christina M Coughlan
- University of Colorado Alzheimer's and Cognition Center (CUACC), Department of Neurology, School of Medicine, Anschutz Medical Campus, Aurora 80045, United States
| |
Collapse
|
4
|
Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding in aged cells. FEMS Yeast Res 2018; 18:4996350. [DOI: 10.1093/femsyr/foy054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
5
|
Abstract
The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a 're-invention' of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer's disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2-S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer's disease.
Collapse
|
6
|
Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012; 2012:941232. [PMID: 22910375 PMCID: PMC3403639 DOI: 10.1155/2012/941232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
As a model organism Saccharomyces cerevisiae has greatly contributed to our understanding of many fundamental aspects of cellular biology in higher eukaryotes. More recently, engineered yeast models developed to study endogenous or heterologous proteins that lay at the root of a given disease have become powerful tools for unraveling the molecular basis of complex human diseases like neurodegeneration. Additionally, with the possibility of performing target-directed large-scale screenings, yeast models have emerged as promising first-line approaches in the discovery process of novel therapeutic opportunities against these pathologies. In this paper, several yeast models that have contributed to the uncovering of the etiology and pathogenesis of several neurodegenerative diseases are described, including the most common forms of neurodegeneration worldwide, Alzheimer's, Parkinson's, and Huntington's diseases. Moreover, the potential input of these cell systems in the development of more effective therapies in neurodegeneration, through the identification of genetic and chemical suppressors, is also addressed.
Collapse
|
7
|
Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P. Protein folding diseases and neurodegeneration: Lessons learned from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1381-95. [DOI: 10.1016/j.bbamcr.2008.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 12/29/2022]
|