1
|
El Mously DA, Mahmoud AM, Khallaf MA, Mandour HS, Batakoushy HA. Facile synthesis of copper nitroprusside chitosan nanocomposite and its catalytic reduction of environmentally hazardous azodyes. BMC Chem 2024; 18:124. [PMID: 38956730 PMCID: PMC11218208 DOI: 10.1186/s13065-024-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
One of the biggest issues affecting the entire world currently is water contamination caused by textile industries' incapacity to properly dispose their wastewater. The presence of toxic textile dyes in the aquatic environment has attracted significant research interest due to their high environmental stability and their negative effects on human health and ecosystems. Therefore, it is crucial to convert the hazardous dyes such as methyl orange (MO) azo dye into environmentally safe products. In this context, we describe the use of Copper Nitroprusside Chitosan (Cu/SNP/Cts) nanocomposite as a nanocatalyst for the chemical reduction of azodyes by sodium borohydride (NaBH4). The Cu/SNP/Cts was readily obtained by chemical coprecipitation in a stoichiometric manner. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy were applied to investigate chemical, phase, composition, and molecular interactions. Additionally, Scanning electron microscope (SEM) was used to examine the nanomaterial's microstructure. UV-vis spectroscopy was utilized for studying the Cu Nitroprusside Chitosan's catalytic activity for the reduction of azodye. The Cu/SNP/Cts nanocomposite demonstrated outstanding performance with total reduction time 160 s and pseudo-first order constant of 0.0188 s-1. Additionally, the stability and reusability study demonstrated exceptional reusability up to 5 cycles with minimal activity loss. The developed Cu/SNP/Cts nanocomposite act as efficient nanocatalysts for the reduction of harmful Methyl orange azodye.
Collapse
Affiliation(s)
- Dina A El Mously
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Amr M Mahmoud
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), New Giza, Km 22 Cairo-Alex Road, Cairo, Egypt
| | - Moustafa Ali Khallaf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Howida S Mandour
- Physical Chemistry Department, National Research Centre, Giza, 12622, Egypt
| | - Hany A Batakoushy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
2
|
Asif K, Adeel M, Mahbubur Rahman M, Bartoletti M, Brezar SK, Cemazar M, Canzonieri V, Rizzolio F, Caligiuri I. Copper nitroprusside: An innovative approach for targeted cancer therapy via ROS modulation. Biomed Pharmacother 2024; 171:116017. [PMID: 38194739 DOI: 10.1016/j.biopha.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
The clinical application of nanomaterials for chemodynamic therapy (CDT), which generate multiple reactive oxygen species (ROS), presents significant challenges. These challenges arise due to insufficient levels of endogenous hydrogen peroxide and catalytic ions necessary to initiate Fenton reactions. As a result, sophisticated additional delivery systems are required. In this study, a novel bimetallic copper (II) pentacyanonitrosylferrate (Cu(II)NP, Cu[Fe(CN) 5 NO]) material was developed to address these limitations. This material functions as a multiple ROS generator at tumoral sites by self-inducing hydrogen peroxide and producing peroxynitrite (ONOO-) species. The research findings demonstrate that this material exhibits low toxicity towards normal liver organoids, yet shows potent antitumoral effects on High Grade Serous Ovarian Cancer (HGSOC) organoid patients, regardless of platinum resistance. Significantly, this research introduces a promising therapeutic opportunity by proposing a single system capable of replacing the need for H2O2, additional catalysts, and NO-based delivery systems. This innovative system exhibits remarkable multiple therapeutic mechanisms, paving the way for potential advancements in clinical treatments.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, South Korea
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
3
|
Jarosińska E, Zambrowska Z, Witkowska Nery E. Methods of Protection of Electrochemical Sensors against Biofouling in Cell Culture Applications. ACS OMEGA 2024; 9:4572-4580. [PMID: 38313548 PMCID: PMC10831843 DOI: 10.1021/acsomega.3c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024]
Abstract
In this work, we evaluated more than 10 antifouling layers presenting different modes of action for application in electrochemical sensors. These layers included porous materials, permselective membranes, hydrogels, silicate sol-gels, proteins, and sp3 hybridized carbon. To evaluate the protective effects of the antifouling modification as well as its impact on the catalyst, we adsorbed a redox mediator on the electrode surface. Five of the tested coatings allowed us to preserve the electrochemical properties of the tested mediator. Later studies showed that sol-gel silicate layer, poly-l-lactic acid, and poly(l-lysine)-g-poly(ethylene glycol) were the only ones capable of sustaining the catalyst's performance during prolonged incubation in a cell culture medium. The highest signal deterioration was observed, as expected during the first few hours of incubation in a cell culture environment. Tested layers exhibited different dynamics of the protective effect. The poly-l-lactic acid layer presented lower changes in the first hours of the study but suffered complete signal deterioration after 72 h. Whereas the signal intensity of the silicate layer was lowered by half after just 3 h but was still visible after 6 weeks of constant incubation of the electrode in the cell culture.
Collapse
Affiliation(s)
- Elżbieta Jarosińska
- Institute of Physical Chemistry,
Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Emilia Witkowska Nery
- Institute of Physical Chemistry,
Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Gupta PS, Wasnik K, Patra S, Pareek D, Singh G, Yadav DD, Maity S, Paik P. Nitric oxide releasing novel amino acid-derived polymeric nanotherapeutic with anti-inflammatory properties for rapid wound tissue regeneration. NANOSCALE 2024; 16:1770-1791. [PMID: 38170815 DOI: 10.1039/d3nr03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 μg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 μg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.
Collapse
Affiliation(s)
- Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Somedutta Maity
- School of Engineering Science and Technology, University of Hydrabad, Hydrabad, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
5
|
Asif K, Adeel M, Rahman MM, Caligiuri I, Perin T, Cemazar M, Canzonieri V, Rizzolio F. Iron nitroprusside as a chemodynamic agent and inducer of ferroptosis for ovarian cancer therapy. J Mater Chem B 2023; 11:3124-3135. [PMID: 36883303 DOI: 10.1039/d2tb02691k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
ChemoDynamic Therapy (CDT) is a powerful therapeutic modality using Fenton/Fenton-like reactions to produce oxidative stress for cancer treatment. However, the insufficient amount of catalyst ions and ROS scavenging activity of glutathione peroxidase (GPX4) limit the application of this approach. Therefore, a tailored strategy to regulate the Fenton reaction more efficiently (utilizing dual metal cations) and inhibit the GPX4 activity, is in great demand. Herein, a CDT system is based on dual (Fe2+ metals) iron pentacyanonitrosylferrate or iron nitroprusside (FeNP) having efficient ability to catalyze the reaction of endogenous H2O2 to form highly toxic ˙OH species in cells. Additionally, FeNP is involved in ferroptosis via GPX4 inhibition. In particular, FeNP was structurally characterized, and it is noted that a minimum dose of FeNP is required to kill cancer cells while a comparable dose shows negligible toxicity on normal cells. Detailed in vitro studies confirmed that FeNP participates in sustaining apoptosis, as determined using the annexin V marker. Cellular uptake results showed that in a short time period, FeNP enters lysosomes and, due to the acidic lysosomal pH, releases Fe2+ ions, which are involved in ROS generation (˙OH species). Western blot analyses confirmed the suppression of GPX4 activity over time. Importantly, FeNP has a therapeutic effect on ovarian cancer organoids derived from High-Grade Serous Ovarian Cancer (HGSOC). Furthermore, FeNP showed biocompatible nature towards normal mouse liver organoids and in vivo. This work presents the effective therapeutic application of FeNP as an efficient Fenton agent along with ferroptosis inducer activity to improve CDT, through disturbing redox homeostasis.
Collapse
Affiliation(s)
- Kanwal Asif
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy. .,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy. .,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy. .,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| |
Collapse
|
6
|
Itterheimová P, Dosedělová V, Kubáň P. Use of metal nanoparticles for preconcentration and analysis of biological thiols. Electrophoresis 2023; 44:135-157. [PMID: 35892259 DOI: 10.1002/elps.202200142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
Metal nanoparticles (NPs) exhibit several unique physicochemical properties, including redox activity, surface plasmon resonance, ability to quench fluorescence, biocompatibility, or a high surface-to-volume ratio. They are being increasingly used in analysis and preconcentration of thiol containing compounds, because they are able to spontaneously form a stable Au/Ag/Cu-S dative bond. They thus find wide application in environmental and particularly in medical science, especially in the analysis of biological thiols, the endogenous compounds that play a significant role in many biological systems. In this review article, we provide an overview of various types of NPs that have been applied in analysis and preconcentration of biological thiols, mainly in human biological fluids. We first discuss shortly the types of NPs and their synthesis, properties, and their ability to interact with thiol compounds. Then we outline the sample preconcentration and analysis methods that were used for this purpose with special emphasis on optical, electrochemical, and separation techniques.
Collapse
Affiliation(s)
- Petra Itterheimová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Dosedělová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Boumya W, Charafi S, Achak M, Bessbousse H, Elhalil A, Abdennouri M, Barka N. Modification strategies of sol-gel carbon ceramic electrodes and their electrochemical applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Kolajo OO, Pandit C, Thapa BS, Pandit S, Mathuriya AS, Gupta PK, Jadhav D, Lahiri D, Nag M, Upadhye VJ. Impact of cathode biofouling in microbial fuel cells and mitigation techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Matos‐Peralta Y, Llanes D, Cano A, Hernández MP, Bazán‐Bravo L, Justo Chao Mujica F, Felipe Desdín García L, Reguera L, Antuch M. Mixed Ni
2+
Co
2+
Transition Metal Nitroprusside: Determination of Its Electrochemical Behavior and Electrocatalytic Activity towards the Oxidation of Phenylhydrazine. ChemistrySelect 2022. [DOI: 10.1002/slct.202201121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Dayma Llanes
- Universidad de la Habana Facultad de Química, Zapata y G 10400 La Habana Cuba
| | - Arely Cano
- Superconducting Radio Frequency (SRF) Materials and Research Department Fermi National Laboratory Batavia, IL 60510 USA
| | - Mayra P. Hernández
- Instituto de Ciencia y Tecnología de Materiales (IMRE) Universidad de La Habana, Zapata y G, El Vedado Plaza de la Revolución La Habana 10400 Cuba
| | | | - Frank Justo Chao Mujica
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30, No. 502 entre 5ta. y 7ma., Miramar, Playa La Habana Cuba
| | - Luis Felipe Desdín García
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30, No. 502 entre 5ta. y 7ma., Miramar, Playa La Habana Cuba
| | - Leslie Reguera
- Universidad de la Habana Facultad de Química, Zapata y G 10400 La Habana Cuba
| | - Manuel Antuch
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30, No. 502 entre 5ta. y 7ma., Miramar, Playa La Habana Cuba
| |
Collapse
|
10
|
Saikrithika S, Shaju A, Dinesh B, Kumar AS. In-situ scanning electrochemical microscopy interrogation on open-circuit release of toxic Ni2+ ion from Ni-containing carbon nanomaterials and nickel-hexacyanoferrate formation in physiological pH and its thiol-electrocatalysis relevance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
An electrochemical sensor based on copper nanowires-PDDA modified glassy carbon electrode for amperometric detection of cysteine in alkaline medium. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Rahman MM. Low-Cost and Efficient Nickel Nitroprusside/Graphene Nanohybrid Electrocatalysts as Counter Electrodes for Dye-Sensitized Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6563. [PMID: 34772088 PMCID: PMC8585226 DOI: 10.3390/ma14216563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Novel nickel nitroprusside (NNP) nanoparticles with incorporated graphene nanoplatelets (NNP/GnP) were used for the first time as a low-cost and effective counter electrode (CE) for dye-sensitized solar cells (DSSCs). NNP was synthesized at a low-temperature (25 °C) solution process with suitable purity and crystallinity with a size range from 5 to 10 nm, as confirmed by different spectroscopic and microscopic analyses. The incorporation of an optimized amount of GnP (0.2 wt%) into the NNP significantly improved the electrocatalytic behavior for the redox reaction of iodide (I-)/tri-iodide (I3-) by decreasing the charge-transfer resistance at the CE/electrolyte interface, lower than the NNP- and GnP-CEs, and comparable to the Pt-CE. The NNP/GnP nanohybrid CE when applied in DSSC exhibited a PCE of 6.13% (under one sun illumination conditions) with the Jsc, Voc, and FF of 14.22 mA/cm2, 0.628 V, and 68.68%, respectively, while the PCE of the reference Pt-CE-based DSSC was 6.37% (Jsc = 14.47 mA/cm2, Voc = 0.635 V, and FF = 69.20%). The low cost of the NNP/GnP hybrid CE with comparable photovoltaic performance to Pt-CE can be potentially exploited as a suitable replacement of Pt-CE in DSSCs.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
13
|
Development and application of electrochemical sensor of boron-doped diamond (BDD) modified by drop casting with tin hexacyanoferrate. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Kamali M, Pourghobadi Z. Voltammetric Determination of Cysteine (2-amino-3-mercaptopropanoic acid, CySH) by Means of 4,4'-biphenol as a Homogeneous Mediator. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1725-1734. [PMID: 32184841 PMCID: PMC7059032 DOI: 10.22037/ijpr.2019.1100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present research, 4,4′-biphenol was used as a homogeneous mediator for determining cysteine (CySH) on a Glassy Carbon Electrode (GCE). To describe the electrochemical properties of 4,4′-biphenol and to examine its electrocatalytic impacts on cysteine oxidation, both Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) were employed. Our findings revealed that 4,4′-biphenol could significantly accelerate the reactions related to electron transfer to CySH. Moreover, the diffusion coefficient of CySH and its reaction with the catalytic constant of 4,4′-diphenoquinone was estimated via chronoamperometry technique. The results showed that cysteine concentration range of 10-1000 μM led to linear increases in the oxidation peaks, thus to providing a detection of 0.99 μM with R² = 0.993. A Relative Standard Deviation (RSD) of 2.5% was achieved after performing 7 cysteine replicates (100 μM), and CySH was successfully determined in real serum samples through the proposed approach.
Collapse
Affiliation(s)
- Mehrnoush Kamali
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Zeinab Pourghobadi
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
15
|
Djebli A, Boudjemaa A, Bendjeffal H, Mamine H, Metidji T, Bekakria H, Bouhedja Y. Photocatalytic degradation of methyl orange using Zn@[Fe(CN)5NO] complex under sunlight irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Abdelkrim Djebli
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Tipaza, Algeria
| | - Amel Boudjemaa
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Tipaza, Algeria
| | - Hacene Bendjeffal
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
- Higher School of Technological Education, ENSET Skikda, Skikda, Algeria
| | - Hadjer Mamine
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
| | - Toufek Metidji
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
| | - Hamida Bekakria
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
| | - Yacine Bouhedja
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
16
|
Nisha S, Kumar AS. Electrochemical conversion of triamterene-diuretic drug to hydroxybenzene-triamterene intermediate mimicking the pharmacokinetic reaction on multiwalled carbon nanotube surface and its electrocatalytic oxidation function of thiol. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Poly(ionic liquids)/reduced graphene oxide miniemulsion polymers as effective support for immobilization of Ag nanoparticles and its amperometric sensing of l-cysteine. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Heidari H, Habibi E. Lead-doped carbon ceramic electrode as a renewable surface composite electrode for the preparation of lead dioxide film and detection of l-tyrosine. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1287-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Li H, Ye L, Wang Y, Xie C. A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine. Mikrochim Acta 2017; 185:5. [PMID: 29594497 DOI: 10.1007/s00604-017-2578-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/18/2017] [Indexed: 11/28/2022]
Abstract
This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (-0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples. Graphical abstract An electrochemical sensing system for the detection of L-cysteine in amino acid injections has been established by using the hollow cubic Cu2O particles as recognition element.
Collapse
Affiliation(s)
- Huaifen Li
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lingling Ye
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yanwei Wang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Chenggen Xie
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
| |
Collapse
|
20
|
Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Anal Chim Acta 2017; 984:96-106. [DOI: 10.1016/j.aca.2017.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022]
|
21
|
Xu H, Li C, Song D, Xu X, Zhao Y, Liu X, Su Z. Amperometric L
-cysteine Sensor Using a Gold Electrode Modified with Thiolated Catechol. ELECTROANAL 2017. [DOI: 10.1002/elan.201700162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haitao Xu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
- College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 PR China
| | - Chaorong Li
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Dongcheng Song
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Xiaolin Xu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 PR China
- Department of Chemistry; Brown University; Providence RI 02912 USA
| | - Xiaoying Liu
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
| | - Zhaohong Su
- College of Science; Hunan Agricultural University; Changsha 410128 PR China
- Department of Chemistry; Brown University; Providence RI 02912 USA
| |
Collapse
|
22
|
Amiri M, Salavati-Niasari M, Akbari A. A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2064-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l -cysteine. Biosens Bioelectron 2016; 77:1112-8. [DOI: 10.1016/j.bios.2015.10.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/03/2023]
|
24
|
Farjami F, Mosalman FK, Ebrahimpourmoghaddam S, Sharghi H. Electrocatalytic Determination of Cysteine Using a Carbon Ionic Liquid Electrode Modified with Terpyridine Copper(II) Complex. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1104325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Nyoni S, Nyokong T. Comparative electrocatalytic studies of nanocomposites of mixed and covalently linked multiwalled carbon nanotubes and 4-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninato cobalt(II). Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Abri A, Rafe AA. Synthesis, Spectra Characterization, Electrochemical Behavior of Silyl Derivatives of Ferrocene. J CHIN CHEM SOC-TAIP 2015. [DOI: 10.1002/jccs.201400222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
|
28
|
Aswini K, Mohan AV, Biju V. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:321-6. [DOI: 10.1016/j.msec.2014.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
29
|
A very low potential electrochemical detection of l-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosens Bioelectron 2013; 50:202-9. [DOI: 10.1016/j.bios.2013.06.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
|
30
|
Majd SM, Teymourian H, Salimi A. Fabrication of an ElectrochemicalL-Cysteine Sensor Based on Graphene Nanosheets Decorated Manganese Oxide Nanocomposite Modified Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300245] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Swetha P, Kumar AS. Phosphomolybdic acid nano-aggregates immobilized nafion membrane modified electrode for selective cysteine electrocatalytic oxidation and anti-dermatophytic activity. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Zare HR, Ghanbari Z, Nasirizadeh N, Benvidi A. Simultaneous determination of adrenaline, uric acid, and cysteine using bifunctional electrocatalyst of ruthenium oxide nanoparticles. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Recent advances in graphite powder-based electrodes. Anal Bioanal Chem 2013; 405:3525-39. [DOI: 10.1007/s00216-013-6816-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/25/2022]
|
34
|
Devaramani S, Malingappa P. Synthesis and characterization of cobalt nitroprusside nano particles: Application to sulfite sensing in food and water samples. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.08.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Pandey PC, Pandey AK, Chauhan DS. Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ge S, Yan M, Lu J, Zhang M, Yu F, Yu J, Song X, Yu S. Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosens Bioelectron 2012; 31:49-54. [DOI: 10.1016/j.bios.2011.09.038] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 11/16/2022]
|
38
|
Voltammetric Study of the Copper Pentacyanonitrosylferrate Adsorbed on the Silica Modified with a Poly(propylene)imine Hexadecylamine Dendrimer for Determination of Nitrite. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2012. [DOI: 10.1155/2012/527596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(propylene)imine hexadecylamine dendrimer (DAB-Am-16) was anchored on the surface of 3-chloropropylsilyl silica gel and subsequently interacted with copper nitroprusside. The composite was characterized by infrared (FTIR), energy dispersive X-ray (EDX), and cyclic voltammetry. The above techniques confirmed the successful anchoring of the dendrimer on the silica gel modified surface and its interaction with copper nitroprusside. The cyclic voltammogram of CuNPSD was found to exhibit two redox couples with (Eθ′)1= 0.30 V and (Eθ′)2= 0.78 V versus Ag/AgCl ( mol L−1; mV s−1) attributed to the redox processes and , respectively. The CuNPSD-modified graphite paste electrode was found to show a linear response of to mol L−1for nitrite determination with a detection limit (DL) of mol L−1and an amperometric sensitivity of 25.0 mA/mol L−1. The CuNPSD-modified graphite paste electrode was found to show a good electrochemical stability and an excellent response to the electrocatalytic oxidation of sodium nitrite.
Collapse
|
39
|
Ultrasensitive detection of l-cysteine using gold–5-amino-2-mercapto-1,3,4-thiadiazole core–shell nanoparticles film modified electrode. Biosens Bioelectron 2011; 30:276-81. [DOI: 10.1016/j.bios.2011.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/10/2011] [Accepted: 09/22/2011] [Indexed: 11/22/2022]
|
40
|
Application of nanocrystalline graphite-like pyrolytic carbon film electrode for determination of thiols. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Steller L, Kreir M, Salzer R. Natural and artificial ion channels for biosensing platforms. Anal Bioanal Chem 2011; 402:209-30. [PMID: 22080413 DOI: 10.1007/s00216-011-5517-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.
Collapse
Affiliation(s)
- L Steller
- Department of Magnetic and Acoustic Resonances, Leibniz Institute for Solid State and Materials Research, Dresden, Germany.
| | | | | |
Collapse
|
42
|
Liu S, Dai G. Preparation and Electrochemical Behaviour of Silver Pentacyanonitrosylferrate Film Modified Glassy Carbon Electrode and Its Electrocatalytic Oxidation to L-cysteine. J CHIN CHEM SOC-TAIP 2011. [DOI: 10.1002/jccs.201190096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Hsiao YP, Su WY, Cheng JR, Cheng SH. Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of l-cysteine. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.12.090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Fabrication and characterization of molybdenum(VI)complex-TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100504042m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel voltammetric sensor for the determination of L-cysteine (L-Cys) was
fabricated based on a TiO2 nanoparticles/bis
[bis(salicylidene-1,4-phenylenediamine)-molybdenum(VI)] carbon paste
electrode. The electrochemical behavior of the sensor was investigated in
detail by cyclic voltammetry. The apparent electron transfer rate constant
(ks) and charge transfer coefficient (?) of the TiO2 nanoparticles /
molybdenum(VI) complex/CPE were also determined by cyclic voltammetry and
found to be about 4.53 s?1 and 0.54, respectively. The sensor displayed good
electrocatalytic activity towards the oxidation of LCys. The peak potential
for the oxidation of L-Cys was lowered by at least 130 mV compared with that
obtained at an unmodified CPE. Under optimal conditions, the linear range
spans L-Cys concentrations from 1.5?10?6 M to 1.2?10?3 M and the detection
limit was 0.70 ? 0.01 ?M at a signal-to-noise ratio of 2. In addition, the
sensor showed good stability and reproducibility.
Collapse
|
46
|
Bucur MP, Bucur B, Radulescu CM, Covaci OI, Radu GL. L-Cysteine Determination Based on Tyrosinase Amperometric Biosensors without Interferences from Thiolic Compounds. ANAL LETT 2010. [DOI: 10.1080/00032711003725540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Liu LP, Yin ZJ, Yang ZS. A l-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 2010; 79:84-9. [DOI: 10.1016/j.bioelechem.2009.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 11/04/2009] [Accepted: 12/04/2009] [Indexed: 11/29/2022]
|
48
|
Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Razmi H, Mohammad-Rezaei R. Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.10.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|