1
|
Gill JK, Shaw GS. Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape. Chembiochem 2024; 25:e202400193. [PMID: 38632088 DOI: 10.1002/cbic.202400193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Förster resonance energy transfer (FRET) is a fluorescence technique that allows quantitative measurement of protein interactions, kinetics and dynamics. This review covers the use of FRET to study the structures and mechanisms of ubiquitination and related proteins. We survey FRET assays that have been developed where donor and acceptor fluorophores are placed on E1, E2 or E3 enzymes and ubiquitin (Ub) to monitor steady-state and real-time transfer of Ub through the ubiquitination cascade. Specialized FRET probes placed on Ub and Ub-like proteins have been developed to monitor Ub removal by deubiquitinating enzymes (DUBs) that result in a loss of a FRET signal upon cleavage of the FRET probes. FRET has also been used to understand conformational changes in large complexes such as multimeric E3 ligases and the proteasome, frequently using sophisticated single molecule methods. Overall, FRET is a powerful tool to help unravel the intricacies of the complex ubiquitination system.
Collapse
Affiliation(s)
- Jashanjot Kaur Gill
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| |
Collapse
|
2
|
Lee MY, Haam CE, Mun J, Lim G, Lee BH, Oh KS. Development of a FOXM1-DBD Binding Assay for High-Throughput Screening Using TR-FRET Assay. Biol Pharm Bull 2021; 44:1484-1491. [PMID: 34602556 DOI: 10.1248/bpb.b21-00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophoretic mobility shift assay (EMSA) technology has been widely employed for the analysis of transcription factors such as Forkhead box protein M1 (FOXM1). However, the application of high-throughput screening (HTS) in performing, such analyses are limited as it uses time consuming electrophoresis procedure and radioisotopes. In this study, we developed a FOXM1-DNA binding domain (DBD) binding assay based on time-resolved fluorescence energy transfer (TR-FRET) that enables HTS for the inhibitors of FOXM1-DNA interaction. This assay was robust, highly reproducible and could be easily miniaturized into 384-well plate format. The signal-to-background (S/B) ratio and Z' factor were calculated as 7.46 and 0.74, respectively, via a series of optimization of the assay conditions. A pilot library screening of 1019 natural compounds was performed using the FOXM1-DBD binding assay. Five hit compounds, namely, AC1LXM, BRN5, gangaleoidin, leoidin, and roemerine were identified as the inhibitors of FOXM1. In a cell viability assay, it was demonstrated that cell proliferation of FOXM1 overexpressed cell lines was suppressed in cell lines such as MDA-MB-231 and MCF-7 by five hit compounds. These results indicate that developed FOXM1-DBD binding assay can be applied to highly efficiency HTS of compound libraries.
Collapse
Affiliation(s)
- Mi Young Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Chae Eun Haam
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Jihye Mun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Gyutae Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Byung Ho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
3
|
Liu Y, Shen Y, Song Y, Xu L, P. Perry JJ, Liao J. Isopeptidase Kinetics Determination by a Real Time and Sensitive qFRET Approach. Biomolecules 2021; 11:biom11050673. [PMID: 33946350 PMCID: PMC8145275 DOI: 10.3390/biom11050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Isopeptidase activity of proteases plays critical roles in physiological and pathological processes in living organisms, such as protein stability in cancers and protein activity in infectious diseases. However, the kinetics of protease isopeptidase activity has not been explored before due to a lack of methodology. Here, we report the development of novel qFRET-based protease assay for characterizing the isopeptidase kinetics of SENP1. The reversible process of SUMOylation in vivo requires an enzymatic cascade that includes E1, E2, and E3 enzymes and Sentrin/SUMO-specific proteases (SENPs), which can act either as endopeptidases that process the pre-SUMO before its conjugation, or as isopeptidases to deconjugate SUMO from its target substrate. We first produced the isopeptidase substrate of CyPet-SUMO1/YPet-RanGAP1c by SUMOylation reaction in the presence of SUMO E1 and E2 enzymes. Then a qFRET analyses of real-time FRET signal reduction of the conjugated substrate of CyPet-SUMO1/YPet-RanGAP1c to free CyPet-SUMO1 and YPet-RanGAP1c by the SENP1 were able to obtain the kinetic parameters, Kcat, KM, and catalytic efficiency (Kcat/KM) of SENP1. This represents a pioneer effort in isopeptidase kinetics determination. Importantly, the general methodology of qFRET-based protease isopeptidase kinetic determination can also be applied to other proteases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA; (Y.L.); (Y.S.)
| | - Yali Shen
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yang Song
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA; (Y.L.); (Y.S.)
| | - Lei Xu
- Department of Geography & the Environment, California State University, Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA;
| | - J. Jefferson P. Perry
- Department of Biochemistry, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Correspondence: (J.J.P.P.); (J.L.)
| | - Jiayu Liao
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA; (Y.L.); (Y.S.)
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Biochemistry, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Correspondence: (J.J.P.P.); (J.L.)
| |
Collapse
|
4
|
von Stockum S, Sanchez-Martinez A, Corrà S, Chakraborty J, Marchesan E, Locatello L, Da Rè C, Cusumano P, Caicci F, Ferrari V, Costa R, Bubacco L, Rasotto MB, Szabo I, Whitworth AJ, Scorrano L, Ziviani E. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2019; 2:e201900392. [PMID: 30988163 PMCID: PMC6467245 DOI: 10.26508/lsa.201900392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | | | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy
| | - Caterina Da Rè
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | - Vanni Ferrari
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elena Ziviani
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Kim TG, Lee JH, Lee MY, Kim KU, Lee JH, Park CH, Lee BH, Oh KS. Development of a High-Throughput Assay for Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1 Based on Time-Resolved Fluorescence Energy Transfer. Biol Pharm Bull 2017; 40:1454-1462. [PMID: 28867728 DOI: 10.1248/bpb.b17-00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although enzyme-linked immunosorbent assay (ELISA) technology has been widely accepted for binding assays against the polo-box domain (PBD) of polo-like kinase-1 (Plk1), these assays have a limitation-related heterogeneous procedure, such as multiple incubations and washing steps to apply high-throughput screenings (HTSs). In the present study, a Plk1-PBD binding assay based on time-resolved fluorescence energy transfer (TR-FRET) was developed for HTS of PBD-binding inhibitors. The TR-FRET-based Plk1-PBD binding assay is sensitive and robust and can be miniaturized into the 384-well plate-based format. Compared with the ELISA-based Plk1-PBD binding assay (Z' factor, 0.53; signal-to-background ratio, 4.19), the TR-FRET-based Plk1-PBD binding assay improved the Z' factor (0.72) and signal-to-background ratio (8.16). Using TR-FRET based Plk1-PBD binding assay, pilot library screening of 1019 natural compounds was conducted and five hit compounds such as haematoxylin, verbascoside, menadione, lithospermic acid and (1,3-dioxolo[4,5-g]isoquinolinium 5,6,7,8-tetrahydro-4-methoxy-6,6-dimethyl-5-[2-oxo-2-(2-pyridinyl)ethyl]-iodide) (DITMD) were identified as Plk1-PBD inhibitor. In a functional assay to validate the hit compounds, five hit compounds exhibited suppression of HeLa cells proliferation. These results suggest that TR-FRET-based Plk1-PBD binding assay can be applied for an efficient and less time-consuming HTS of compound libraries.
Collapse
Affiliation(s)
- Tae Gi Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Chi Hoon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
6
|
Liu Y, Shen Y, Zheng S, Liao J. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates. MOLECULAR BIOSYSTEMS 2016; 11:3407-14. [PMID: 26486594 DOI: 10.1039/c5mb00568j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SUMOylation (the process of adding the SUMO [small ubiquitin-like modifier] to substrates) is an important post-translational modification of critical proteins in multiple processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate the SUMO from its substrate. Determining the kinetics of SENPs is important for understanding their activities. Förster resonance energy transfer (FRET) technology has been widely used in biomedical research and is a powerful tool for elucidating protein interactions. In this paper we report a novel quantitative FRET-based protease assay for SENP2 endopeptidase activity that accounts for the self-fluorescent emissions of the donor (CyPet) and the acceptor (YPet). The kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP2 toward pre-SUMO1/2/3, were obtained by this novel design. Although we use SENP2 to demonstrate our method, the general principles of this quantitative FRET-based protease kinetic determination can be readily applied to other proteases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, USA.
| | - Yali Shen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chngdu 610041, P. R. China
| | - Shasha Zheng
- Department of Health Sciences, College of Allied Health, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504, USA
| | - Jiayu Liao
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, USA. and Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, California 92521, USA
| |
Collapse
|
7
|
Eustis IC, Huang J, Pilkerton ME, Whedon SD, Chatterjee C. A time-resolved Förster resonance energy transfer assay to measure activity of the deamidase of the prokaryotic ubiquitin-like protein. Anal Biochem 2015. [PMID: 26205584 DOI: 10.1016/j.ab.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modification of proteins in Mycobacterium tuberculosis (Mtb) by the prokaryotic ubiquitin-like protein (Pup) targets them for degradation by mycobacterial proteasomes. Although functionally similar to eukaryotic deubiquitylating enzymes, the deamidase of Pup, called Dop, has no known mammalian homologs. Because Dop is necessary for persistent infection by Mtb, its selective inhibition holds potential for tuberculosis therapy. To facilitate high-throughput screens for Dop inhibitors, we developed a time-resolved Förster resonance energy transfer (TR-FRET)-based assay for Dop function. The TR-FRET assay was successfully applied to determine the Michaelis constant for adenosine triphosphate (ATP) binding and to test the cofactor tolerance of Dop.
Collapse
Affiliation(s)
- Ian C Eustis
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Jessica Huang
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Meagan E Pilkerton
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Samuel D Whedon
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA.
| |
Collapse
|
8
|
Chen Z, Zhong Y, Wang Y, Xu S, Liu Z, Baskakov IV, Monteiro MJ, Karbowski M, Shen Y, Fang S. Ubiquitination-induced fluorescence complementation (UiFC) for detection of K48 ubiquitin chains in vitro and in live cells. PLoS One 2013; 8:e73482. [PMID: 24039955 PMCID: PMC3764048 DOI: 10.1371/journal.pone.0073482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/21/2013] [Indexed: 12/17/2022] Open
Abstract
Proteins can be modified with eight homogenous ubiquitin chains linked by an isopeptide bond between the C-terminus of one ubiquitin and an amine from one of the seven lysines or the N-terminal methionine of the next ubiquitin. These topologically distinct ubiquitin chains signal for many essential cellular functions, such as protein degradation, cell cycle progression, DNA repair, and signal transduction. The lysine 48 (K48)-linked ubiquitin chain is one of the most abundant chains and a major proteasome-targeting signal in cells. Despite recent advancements in imaging linkage-specific polyubiquitin chains, no tool is available for imaging K48 chains in live cells. Here we report on a ubiquitination-induced fluorescence complementation (UiFC) assay for detecting K48 ubiquitin chains in vitro and in live cells. For this assay, two nonfluorescent fragments of a fluorescent protein were fused to the ubiquitin-interacting motifs (UIMs) of epsin1 protein. Upon simultaneous binding to a ubiquitin chain, the nonfluorescent fragments of the two fusion proteins are brought in close proximity to reconstitute fluorescence. When used in vitro, UiFC preferentially detected K48 ubiquitin chains with excellent signal-to-noise ratio. Time-lapse imaging revealed that UiFC is capable of monitoring increases in polyubiquitination induced by treatment with proteasome inhibitor, by agents that induce stress, and during mitophagy in live cells.
Collapse
Affiliation(s)
- Zhiliang Chen
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Yang Wang
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
- School of Basic Medical Science and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Shan Xu
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Zheng Liu
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (SF); (YS); (MK)
| | - Yuxian Shen
- School of Basic Medical Science and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- * E-mail: (SF); (YS); (MK)
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Anhui Medical University, Hefei, China
- Department of Physiology, Anhui Medical University, Hefei, China
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (SF); (YS); (MK)
| |
Collapse
|
9
|
Breuer S, Espinola S, Morelli X, Torbett BE, Arold ST, Engels IH. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction. Curr Chem Genom Transl Med 2013; 7:16-20. [PMID: 24396731 PMCID: PMC3854662 DOI: 10.2174/2213988501307010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 11/25/2022] Open
Abstract
The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.
Collapse
Affiliation(s)
- Sebastian Breuer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sheryll Espinola
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121, USA
| | - Xavier Morelli
- CRCM, CNRS UMR7258, Laboratory of Integrative Structural and Chemical Biology (ISCB); INSERM, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM105, F-13009, Marseille, France
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stefan T Arold
- Department of Biochemistry and Molecular Biology, Unit 1000, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA ; King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciencesand Engineering, Computational Bioscience Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Ingo H Engels
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121, USA
| |
Collapse
|
10
|
Internal calibration Förster resonance energy transfer assay: a real-time approach for determining protease kinetics. SENSORS 2013; 13:4553-70. [PMID: 23567524 PMCID: PMC3673099 DOI: 10.3390/s130404553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research. This powerful tool can elucidate protein interactions in either a dynamic or steady state. We recently developed a series of FRET-based technologies to determine protein interaction dissociation constant and for use in high-throughput screening assays of SUMOylation. SUMO (small ubiquitin-like modifier) is conjugated to substrates through an enzymatic cascade. This important posttranslational protein modification is critical for multiple biological processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate SUMO from its substrate. Here, we describe a novel quantitative FRET-based protease assay for determining the kinetics of SENP1. Our strategy is based on the quantitative analysis and differentiation of fluorescent emission signals at the FRET acceptor emission wavelengths. Those fluorescent emission signals consist of three components: the FRET signal and the fluorescent emissions of donor (CyPet) and acceptor (YPet). Unlike our previous method in which donor and acceptor direct emissions were excluded by standard curves, the three fluorescent emissions were determined quantitatively during the SENP digestion process from onesample. New mathematical algorithms were developed to determine digested substrate concentrations directly from the FRET signal and donor/acceptor direct emissions. The kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of SENP1 catalytic domain for pre-SUMO1/2/3 were derived. Importantly, the general principles of this new quantitative methodology of FRET-based protease kinetic determinations can be applied to other proteases in a robust and systems biology approach.
Collapse
|
11
|
Liu Y, Liao J. Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination. J Vis Exp 2013:e4430. [PMID: 23463095 DOI: 10.3791/4430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle (1,3,6,7). The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate (8-13). However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs. Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) (9,10,14,15). The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate. We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate (16). We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x10(7) M(-1)s(-1) of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.
Collapse
Affiliation(s)
- Yan Liu
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA, USA
| | | |
Collapse
|
12
|
NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 2012; 32:3954-64. [PMID: 23001041 DOI: 10.1038/onc.2012.428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
The transcription factor E2F1 has pivotal roles in both cell proliferation and cell death, and is an important molecular target in cancer. Under proliferative conditions E2F1 induces the expression of genes that promote cell cycle progression, such as E2F2, whereas under proapoptotic conditions E2F1 induces expression of genes such as p73 that lead to apoptosis. The mechanism by which the apoptotic function of E2F1 is activated remains unclear, however. We now show that members of the E2F family are covalently conjugated with the ubiquitin-like modifier NEDD8. Overexpression of SENP8, a NEDD8-specific cysteine protease, resulted in deNEDDylation of E2F1 and promoted its transactivation activity at the p73 gene but not at the E2F2 gene. Knockdown of SENP8, on the other hand, attenuated p73 expression and apoptosis induced by E2F1 or by DNA damage. SENP8 also promoted the interaction between E2F1 and its cofactor Microcephalin 1, which is required for p73 induction. These results suggest that NEDDylation is a molecular trigger that modifies the target specificity of E2F1, and could have important implications for E2F1 regulation of apoptosis.
Collapse
|
13
|
Liu Y, Song Y, Madahar V, Liao J. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease. Anal Biochem 2011; 422:14-21. [PMID: 22244808 DOI: 10.1016/j.ab.2011.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022]
Abstract
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|