1
|
Guo X, Guo H, Zhao L, Zhang YH, Zhang JX. Two predominant MUPs, OBP3 and MUP13, are male pheromones in rats. Front Zool 2018; 15:6. [PMID: 29483934 PMCID: PMC5824612 DOI: 10.1186/s12983-018-0254-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In rats, urine-borne male pheromones comprise organic volatile compounds and major urinary proteins (MUPs). A number of volatile pheromones have been reported, but no MUP pheromones have been identified in rat urine. RESULTS We used sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) after in gel digestion of the proteins and quantitative real-time PCR (qRT-PCR) and showed that the levels of two MUPs, odorant-binding protein 3 (OBP3) (i.e. PGCL4) and MUP13 (i.e. PGCL1), in urine and their mRNAs in liver were higher in males than in females and were suppressed by orchidectomy and restored by testosterone treatment (T treatment). We then generated recombinant MUPs (rMUPs) and found that the sexual attractiveness of urine from castrated males to females significantly increased after the addition of either recombinant OBP3 (rOBP3) or recombinant MUP13 (rMUP13). Using c-Fos immunohistochemistry, we further examined neuronal activation in the brains of female rats after they sniffed rOBP3 or rMUP13. Both rOBP3 and rMUP13 activated the accessory olfactory bulb (AOB), medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), posteromedial cortical amygdala (PMCo) and ventromedial nucleus of the hypothalamus (VMH), which participate in the neural circuits responsible for pheromone-induced sexual behaviours. In particular, more c-Fos-immunopositive (c-Fos-ir) cells were observed in the posterior AOB than in the anterior AOB. CONCLUSIONS The expression of OBP3 and MUP13 was male-biased and androgen-dependent. They attracted females and activated brain areas related to sexual behaviours in female rats, suggesting that both OBP3 and MUP13 are male pheromones in rats. Particularly, an OBP excreted into urine was exemplified to be a chemical signal.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Huifen Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Beijing, 100101 China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Beijing, 100101 China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Beijing, 100101 China
| |
Collapse
|
2
|
Enk VM, Baumann C, Thoß M, Luzynski KC, Razzazi-Fazeli E, Penn DJ. Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. MOLECULAR BIOSYSTEMS 2016; 12:3005-16. [PMID: 27464909 PMCID: PMC5166567 DOI: 10.1039/c6mb00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023]
Abstract
Major urinary proteins (MUPs) are highly homologous proteoforms that function in binding, transporting and releasing pheromones in house mice. The main analytical challenge for studying variation in MUPs, even for state-of-the-art proteomics techniques, is their high degree of amino acid sequence homology. In this study we used unique peptides for proteoform-specific identification. We applied different search engines (ProteinPilot™vs. PEAKS®) and protein databases (MUP database vs. SwissProt + unreviewed MUPs), and found that proteoform identification is influenced by addressing background proteins (unregulated urinary proteins, non-MUPs) during the database search. High resolution Q-TOF mass spectrometry was used to identify and precisely quantify the regulation of MUP proteoforms in male mice that were reared in standard housing and then transferred to semi-natural enclosures (within-subject design). By using a designated MUP database we were able to distinguish 19 MUP proteoforms, with A2CEK6 (a Mup11 gene product) being the most abundant based on spectral intensities. We compared three different quantification strategies based on MS1- (from IDA and SWATH™ spectra) and MS2 (SWATH™) data, and the results of these methods were correlated. Furthermore, three data normalization methods were compared and we found that increased statistical significance of fold-changes can be achieved by normalization based on urinary protein concentrations. We show that male mice living in semi-natural enclosures significantly up-regulated some but not all MUPs (differential regulation), e.g., A2ANT6, a Mup6 gene product, was upregulated between 9-fold (MS1) and 13-fold (MS2) using the designated MUP database. Finally, we show that 85 ± 7% of total MS intensity can be attributed to MUP-derived peptides, which supports the assumption that MUPs are the primary proteins in mouse urine. Our results provide new tools for assessing qualitative and quantitative variation of MUPs and suggest that male mice regulate the expression of specific MUP proteoforms, depending upon social conditions.
Collapse
Affiliation(s)
- Viktoria M. Enk
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Christian Baumann
- SCIEX Germany GmbH , Landwehrstraße 54 , D-64293 Darmstadt , Germany
| | - Michaela Thoß
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Kenneth C. Luzynski
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Ebrahim Razzazi-Fazeli
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Dustin J. Penn
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| |
Collapse
|
3
|
Song W, Yu L, Peng Z. Targeted label-free approach for quantification of epoxide hydrolase and glutathione transferases in microsomes. Anal Biochem 2015; 478:8-13. [PMID: 25769418 DOI: 10.1016/j.ab.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the expression and organ distribution of cytochrome P450 (CYP450) enzymes, microsomal epoxide hydrolase (MEH), and microsomal glutathione-S-transferase (MGST 1, 2, 3) in human liver, lung, intestinal, and kidney microsomes by targeted peptide-based quantification using nano liquid chromatography-tandem multiple reaction monitoring (nano LC-MRM). Applying this method, we analyzed 16 human liver microsomes and pooled lung, kidney, and intestine microsomes. Nine of the CYP450s (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) could be quantified in liver. Except for CYP3A4 and 3A5 existing in intestine, other CYP450s had little content (<0.1 pmol/mg protein) in extrahepatic tissues. MEH and MGSTs could be quantified both in hepatic and in extrahepatic tissues. The highest concentrations of MEH and MGST 1, 2 were found in liver; conversely MGST 3 was abundant in human kidney and intestine compared to liver. The targeted proteomics assay described here can be broadly and efficiently utilized as a tool for investigating the targeted proteins. The method also provides novel CYP450s, MEH, and MGSTs expression data in human hepatic and extrahepatic tissues that will benefit rational approaches to evaluate metabolism in drug development.
Collapse
Affiliation(s)
- Wei Song
- Institute of Resource Biology and Biotechnology, Department of biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhihong Peng
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Miller LM, Huang Yang CP, Xiao H, Isaac S, Sève P, Dumontet C, Band Horwitz S, Hogue Angeletti R. A label-free mass spectrometry method for relative quantitation of β-tubulin isotype expression in human tumor tissue. Proteomics Clin Appl 2012; 6:502-6. [PMID: 22996942 DOI: 10.1002/prca.201200018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Quantitation of β-tubulin isotype expression in taxane resistant human tumor tissue has been difficult to achieve because of the limited availability of validated antibodies. Here we present a label-free MS method to quantitate relative expression levels of β-tubulin isotypes. EXPERIMENTAL DESIGN Using isotype-specific reporter peptides, we determined relative β-tubulin isotype expression levels in human lung tumor tissue. RESULTS Four reporter peptides were chosen to quantitate the βI/βII, βIV, βIII, and βV tubulin isotypes. These peptides were validated using human cancer cell lines. The label-free method was then used to determine β-tubulin isotype expression in nine human lung tumor samples, which had been described as high or low βIII-tubulin expressing using immunohistochemistry. It was found that βI/βII (accounting for 18.7-65.7% of total β-tubulin) and βIVa/βIVb (26.3-79.1%) were the most abundant isotypes and that the βIII (0-8.9%) and βV (1.0-10.4%) were less abundant in the tissue. We also categorized the samples as high or low βIII-tubulin expressing. CONCLUSION AND CLINICAL RELEVANCE With this method we can determine the relative expression levels of β-tubulin isotypes in human tumor tissue. This method will facilitate studies assessing the use of tubulin isotypes as biomarkers of taxane resistance.
Collapse
Affiliation(s)
- Leah M Miller
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang S, Zhao R, Liu J, Zhao J. A Label-Free Strategy for both Qualification and Quantitation of Protein Based on Tandem Mass Spectrometry. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Calligaris D, Villard C, Terras L, Braguer D, Verdier-Pinard P, Lafitte D. MALDI In-Source Decay of High Mass Protein Isoforms: Application to α- and β-Tubulin Variants. Anal Chem 2010; 82:6176-84. [DOI: 10.1021/ac100996v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Calligaris
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| | - Claude Villard
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| | - Lionel Terras
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| | - Diane Braguer
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| | - Pascal Verdier-Pinard
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| | - Daniel Lafitte
- INSERM UMR 911, Centre de Recherche en Oncologie biologique et en Oncopharmacologie, Plateforme d’Innovation Technologique Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France, and Société Synprosis, Hôtel Technologique-BP 100, Technopôle de Château Gombert, 13382 Marseille Cedex 13, France
| |
Collapse
|
7
|
Miller LM, Xiao H, Burd B, Horwitz SB, Angeletti RH, Verdier-Pinard P. Methods in tubulin proteomics. Methods Cell Biol 2010; 95:105-26. [PMID: 20466132 DOI: 10.1016/s0091-679x(10)95007-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New analytical methods are needed for the successful outcome of experiments aimed at characterizing mechanisms of microtubule dynamics and at understanding the effects of drugs on microtubules. The identification of tubulin isotypes and of regions of the microtubule involved in drug interactions has been advanced by proteomic methodologies. The diversity of tubulin sequences and posttranslational modifications (PTMs) can generate a complex mixture of heterodimers with unique molecular dynamics driving specific functions. Mass spectrometry (MS)-based approaches have been developed, and in combination with chromatographic and/or electrophoretic separation of tubulin polypeptides or peptides, they have contributed to our understanding of tubulin proteomics. We present protocols that we have used for the analysis of tubulin isotypes and PTMs present in tubulin isolated from cells in culture or tissues and for the identification of tubulin regions altered by microtubule-stabilizing agents. Tubulin proteomics complements structural and computer modeling information for a high-resolution view of microtubule dynamics and its alteration by drugs. These methodologies will help in providing insights into tubulin isotype-specific functions and in the design of drugs targeting either all tubulin heterodimers indiscriminately or only those containing specific isotypes.
Collapse
Affiliation(s)
- Leah M Miller
- Laboratory of Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|