1
|
Hussein Ali T, Mousa Mandal A, Alhasan A, Dehaen W. Surface fabrication of magnetic core-shell silica nanoparticles with perylene diimide as a fluorescent dye for nucleic acid visualization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Mahalakshmi G, Vennila KN, Selvakumar B, Rao PL, Malwade R, Deval S, Madhuri S, Seenivasaperumal M, Elango KP. Spectroscopic investigations on DNA binding profile of two new naphthyridine carboxamides and their application as turn-on fluorescent DNA staining probes. J Biomol Struct Dyn 2019; 38:3443-3451. [PMID: 31422749 DOI: 10.1080/07391102.2019.1657501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new 10-methoxydibenzo[b,h][1,6]naphthyridine-2-carboxamide derivatives (R1 and R2) have been synthesized and characterized using different spectral techniques. The binding of these probes with DNA was investigated using spectral (Electronic, fluorescence, 1H NMR and circular dichroism) and molecular docking studies. These probes exhibited a strong fluorescence around 440 nm upon excitation around 380 nm. Electronic and competitive fluorescence titration studies, in HEPES [(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)] buffer/dimethyl sulfoxide (pH 7.4) medium, suggest that these probes bind strongly to DNA, which is substantiated by 1H NMR study. The binding constants are calculated to be 5.3 × 107 and 6.8 × 106 M-1 for R1 and R2, respectively. From the results of spectral studies, it is proposed that the mechanism of binding of these probes with DNA is through minor groove binding mode, which is further confirmed by circular dichroism and molecular docking studies. Initial cell viability screening using MTT (3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay shows that normal Vero cells are viable towards these probes at nano molar concentration, which is the concentration range employed in the present study for DNA staining (IC50 in the order of 0.023 mM). The enhancement in fluorescence intensity of these probes upon binding with DNA enables the staining of DNA in agarose gel in gel electrophoresis experiment. The sensitivity of these probes is comparable with that of ethidium bromide and DNA amounts as low as 4 nano gram are detectable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Mahalakshmi
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | | | - P Lakshmana Rao
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Ruchi Malwade
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Sunny Deval
- National Institute of Animal Biotechnology, Hyderabad, India
| | - S Madhuri
- National Institute of Animal Biotechnology, Hyderabad, India
| | - M Seenivasaperumal
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, India
| |
Collapse
|
3
|
Paredes AJ, Alfaro-Valdés HM, Wilson CAM. DNA Staining Method Based on Formazan Precipitation Induced by Blue Light Exposure. J Vis Exp 2018. [PMID: 29443080 DOI: 10.3791/56528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
DNA staining methods are very important for biomedical research. We designed a simple method that allows DNA visualization to the naked eye by the formation of a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in a solution of 1x (equivalent to 2.0 µM) SYBR Green I (SG I) and 0.20 mM nitro blue tetrazolium that produces a purple precipitate of formazan when exposed to sunlight or specifically blue light. Also, DNA recovery tests were performed using an ampicillin resistant plasmid in an agarose gel stained with our method. A larger number of colonies was obtained with our method than with traditional staining using SG I with ultraviolet illumination. The described method is fast, specific, and non-toxic for DNA detection, allowing visualization of biomolecules to the "naked eye" without a transilluminator, and is inexpensive and appropriate for field use. For these reasons, our new DNA staining method has potential benefits to both research and industry.
Collapse
Affiliation(s)
- Aaron J Paredes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| | - Hilda M Alfaro-Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile;
| |
Collapse
|
4
|
Paredes AJ, Naranjo-Palma T, Alfaro-Valdés HM, Barriga A, Babul J, Wilson CAM. New visible and selective DNA staining method in gels with tetrazolium salts. Anal Biochem 2017; 517:31-35. [PMID: 27840054 DOI: 10.1016/j.ab.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
Abstract
DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry.
Collapse
Affiliation(s)
- Aaron J Paredes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Tatiana Naranjo-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Hilda M Alfaro-Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
5
|
Sönmezoğlu ÖA, Özkay K. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:515-22. [PMID: 26158569 DOI: 10.1080/15257770.2015.1017581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies.
Collapse
Affiliation(s)
- Özlem Ateş Sönmezoğlu
- a Karamanoglu Mehmetbey University , Department of Bioengineering , Karaman , Turkey
| | | |
Collapse
|
6
|
Cong W, Chen M, Zhu Z, Liu Z, Nan J, Ye W, Ni M, Zhao T, Jin L. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis. Analyst 2014; 138:1187-94. [PMID: 23296513 DOI: 10.1039/c2an36079a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we describe a brief, sensitive and safe organic dye-based staining method for the visualization of DNA both in agarose and polyacrylamide gels by using Victoria Pure Blue BO (VPBBO). Down to 0.8-1.6 ng of λ DNA/HindIII markers in agarose gels and 0.4-0.8 ng of pUC18 DNA/Mspl markers in polyacrylamide gels can be successfully detected within 15 and 10 min by the new developed technique, respectively. Moreover, the mechanism of the VPBBO staining was investigated and further confirmed by electrospray ionization mass spectrometry (ESI-MS) and molecular docking. The results indicated that the interaction between VPBBO and DNA is mainly due to groove binding.
Collapse
Affiliation(s)
- Weitao Cong
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A method for sensitive staining of DNA in polyacrylamide gels using basic fuchsin. Bioanalysis 2014; 5:1545-54. [PMID: 23795932 DOI: 10.4155/bio.13.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND PAGE is a widely used analytical method to resolve components of a DNA mixture based on their size. Various DNA visualization methods including fluorescence, visible dye and silver have been used for the detection of gel-separated DNA, with each having different advantages and disadvantages in terms of sensitivity, safety and simplicity. RESULTS A fast and sensitive visible dye-based staining method for DNA in polyacrylamide gels using basic fuchsin (BF) is described. As low as 10-20 pg of DNA can be visualized within 10 min; the sensitivity is fourfold more sensitive than that of SYBR® Gold stain, the most sensitive commercial fluorescent probe, but similar to silver staining kit from GE Healthcare. In addition, the mechanism studies suggest that the interaction of BF with DNA is mainly contributed by non-intercalative binding mode. CONCLUSION By comprehensive studies of this visible dye-based protocol, we concluded that BF stain is a fast and sensitive method currently available for detecting DNA in polyacrylamide gels.
Collapse
|