1
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
2
|
Akizuki K, Toyama T, Yamashita M, Sugiyama Y, Ishida A, Kameshita I, Sueyoshi N. Facile preparation of highly active casein kinase 1 using Escherichia coli constitutively expressing lambda phosphatase. Anal Biochem 2018; 549:99-106. [DOI: 10.1016/j.ab.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/27/2022]
|
3
|
Yamashita M, Sueyoshi N, Yamada H, Katayama S, Senga Y, Takenaka Y, Ishida A, Kameshita I, Shigeri Y. Characterization of CoPK02, a Ca 2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea. Biosci Biotechnol Biochem 2018; 82:1335-1343. [PMID: 29673297 DOI: 10.1080/09168451.2018.1462692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca2+/CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca2+/CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca2+-signaling in C. cinerea.
Collapse
Affiliation(s)
- Masashi Yamashita
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Noriyuki Sueyoshi
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Hiroki Yamada
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Syouichi Katayama
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Yukako Senga
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan.,b Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Yasuhiro Takenaka
- c Department of Physiology , Nippon Medical School , Bunkyo-ku, Japan
| | - Atsuhiko Ishida
- d Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Isamu Kameshita
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Yasushi Shigeri
- e Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Japan
| |
Collapse
|
5
|
Katayama S, Sueyoshi N, Kameshita I. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5). Biochemistry 2015; 54:2975-87. [PMID: 25905439 DOI: 10.1021/bi501308k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.
Collapse
Affiliation(s)
- Syouichi Katayama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
6
|
Kaneko K, Tabuchi M, Sueyoshi N, Ishida A, Utsumi T, Kameshita I. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation. J Biochem 2014; 156:51-61. [PMID: 24659342 DOI: 10.1093/jb/mvu018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mitsuaki Tabuchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Atsuhiko Ishida
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshihiko Utsumi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
7
|
Senga Y, Yoshioka K, Kameshita I, Sueyoshi N. Expression and gene knockdown of zebrafish Ca2+/calmodulin-dependent protein kinase Iδ-LL. Arch Biochem Biophys 2013; 540:41-52. [DOI: 10.1016/j.abb.2013.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 02/03/2023]
|
8
|
Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys 2013; 535:257-67. [DOI: 10.1016/j.abb.2013.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|