1
|
Chen Z, Wang X, Luo J, Zhang B, Shen F, Li B, Yang J. Synthesis and characterization of rod-like amino acids/nanohydroxyapatite composites to inhibit osteosarcoma. RSC Adv 2022; 12:36103-36114. [PMID: 36545101 PMCID: PMC9756758 DOI: 10.1039/d2ra03784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, rod-like hydroxyapatite (HA) with uniform morphology and controllable particle size modified by doping with two different amino acids (alanine and threonine) was synthesized by a microwave hydrothermal method. The physical and chemical properties of the composites were tested by utilizing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), general thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The SEM and XRD results show that the presence of amino acids (especially threonine) can significantly reduce the aspect ratio and crystallinity of hydroxyapatite. Pure hydroxyapatite and modified hydroxyapatite doped with two different proportions of amino acids were cultured with mouse osteoblasts (MC3T3-E1) for 1, 3 and 5 days, respectively, nanohydroxyapatite modified by threonine has better biocompatibility compared with pure hydroxyapatite. The amino acid-modified hydroxyapatite samples were co-cultured with osteosarcoma cells (MG63) for 1, 4 and 7 days, respectively, and showed better inhibitory effects on osteosarcoma cells. The nanohydroxyapatite doped with amino acids could be used as a potential drug that promotes bone repair and inhibits the growth of osteosarcoma cells.
Collapse
Affiliation(s)
- Zhengxiong Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen ValleyFoshan 528200P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Jing Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Bowen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Fei Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan 430070P. R. China,Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of TechnologyWuhan 430070P. R. China
| |
Collapse
|
2
|
Adjogatse E, Bennett J, Guo J, Erskine PT, Wood SP, Wren BW, Cooper JB. The X-ray structure of L-threonine dehydrogenase from the common hospital pathogen Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2021; 77:269-274. [PMID: 34341193 PMCID: PMC8329716 DOI: 10.1107/s2053230x21007135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
In many prokaryotes, the first step of threonine metabolism is catalysed by the enzyme threonine dehydrogenase (TDH), which uses NAD+ to oxidize its substrate to 2-amino-3-ketobutyrate. The absence of a functional TDH gene in humans suggests that inhibitors of this enzyme may have therapeutic potential against pathogens which are reliant on this enzyme. Here, TDH from Clostridium difficile has been cloned and overexpressed, and the X-ray structure of the apoenzyme form has been determined at 2.6 Å resolution.
Collapse
Affiliation(s)
- Eyram Adjogatse
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Josh Bennett
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Jingxu Guo
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England
| | - Peter T. Erskine
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England
| | - Steve P. Wood
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
- Institute of Biomedical and Biomolecular Science, School of Biological Sciences, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, England
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, England
| | - Jonathan B. Cooper
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England
| |
Collapse
|
3
|
Kozuka K, Nakano S, Asano Y, Ito S. Partial Consensus Design and Enhancement of Protein Function by Secondary-Structure-Guided Consensus Mutations. Biochemistry 2021; 60:2309-2319. [PMID: 34254784 DOI: 10.1021/acs.biochem.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consensus design (CD) is a representative sequence-based protein design method that enables the design of highly functional proteins by analyzing vast amounts of protein sequence data. This study proposes a partial consensus design (PCD) of a protein as a derivative approach of CD. The method replaces the target protein sequence with a consensus sequence in a secondary-structure-dependent manner (i.e., regionally dependent and divided into α-helix, β-sheet, and loop regions). In this study, we generated several artificial partial consensus l-threonine 3-dehydrogenases (PcTDHs) by PCD using the TDH from Cupriavidus necator (CnTDH) as a target protein. Structural and functional analysis of PcTDHs suggested that thermostability would be independently improved when consensus mutations are introduced into the loop region of TDHs. On the other hand, enzyme kinetic parameters (kcat/Km) and average productivity would be synergistically enhanced by changing the combination of the mutations-replacement of one region of CnTDH with a consensus sequence provided only negative effects, but the negative effects were nullified when the two regions were replaced simultaneously. Taken together, we propose the hypothesis that there are protein regions that encode individual protein properties, such as thermostability and activity, and that the introduction of consensus mutations into these regions could additively or synergistically modify their functions.
Collapse
Affiliation(s)
- Kohei Kozuka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.,PREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
4
|
Yoneda K, Nagano R, Mikami T, Sakuraba H, Fukui K, Araki T, Ohshima T. Catalytic properties and crystal structure of UDP-galactose 4-epimerase-like l-threonine 3-dehydrogenase from Phytophthora infestans. Enzyme Microb Technol 2020; 140:109627. [DOI: 10.1016/j.enzmictec.2020.109627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
|
5
|
Motoyama T, Hiramatsu N, Asano Y, Nakano S, Ito S. Protein Sequence Selection Method That Enables Full Consensus Design of Artificial l-Threonine 3-Dehydrogenases with Unique Enzymatic Properties. Biochemistry 2020; 59:3823-3833. [PMID: 32945652 DOI: 10.1021/acs.biochem.0c00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exponentially increasing protein sequence data enables artificial enzyme design using sequence-based protein design methods, including full-consensus protein design (FCD). The success of artificial enzyme design is strongly dependent on the nature of the sequences used. Hence, sequences must be selected from databases and curated libraries prepared to enable a successful design by FCD. In this study, we proposed a selection approach regarding several key residues as sequence motifs. We used l-threonine 3-dehydrogenase (TDH) as a model to test the validity of this approach. In the classification, four residues (143, 174, 188, and 214) were used as key residues. We classified thousands of TDH homologous sequences into five groups containing hundreds of sequences. Utilizing sequences in the libraries, we designed five artificial TDHs by FCD. Among the five, we successfully expressed four in soluble form. Biochemical analysis of artificial TDHs indicated that their enzymatic properties vary; half of the maximum measured enzyme activity (t1/2) and activation energies were distributed from 53 to 65 °C and from 38 to 125 kJ/mol, respectively. The artificial TDHs had unique kinetic parameters, distinct from one another. Structural analysis indicates that consensus mutations are mainly introduced in the secondary or outer shell. The functional diversity of the artificial TDHs is due to the accumulation of mutations that affect their physicochemical properties. Taken together, our findings indicate that our proposed approach can help generate artificial enzymes with unique enzymatic properties.
Collapse
Affiliation(s)
- Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nozomi Hiramatsu
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Ding H, Zhao X, Ma C, Gao Q, Yin Y, Kong X, He J. Dietary supplementation with Bacillus subtilis DSM 32315 alters the intestinal microbiota and metabolites in weaned piglets. J Appl Microbiol 2020; 130:217-232. [PMID: 32628331 DOI: 10.1111/jam.14767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
AIM The study was conducted to investigate the effects of dietary Bacillus subtilis (BS) DSM 32315 on the intestinal microbiota composition and metabolites of weaned pigs. METHODS AND RESULTS Sixty-four piglets were allocated to two groups (control and BS), each group including eight replicates with four piglets. Dietary BS DSM 32315 increased (P < 0·05) the abundances of jejunal Leucobacter and Cupriavidus, ileal Thermus, Coprococcus and Bifidobacterium, as well as colonic Succiniclasticum; and increased the concentrations of ileal straight-chain fatty acids, colonic propionate, branched-chain fatty acids (BCFAs), and tyramine, but decreased (P < .05) the colonic indole concentration. The ileal and colonic microbial community structure tended to cluster into two groups. LEfSe analysis identified five microbial biomarkers in jejunum and eight biomarkers in ileum in the BS group, and three biomarkers in colon in the control group. The ileal Bifidobacterium abundance was positively correlated (P < 0·05) with isovalerate concentration, while the colonic Actinobacteria and Lactobacillus abundances were negatively correlated (P < 0·05) with indole concentration. CONCLUSION These findings suggest that dietary supplementation with BS DSM 32315 could alter the diversity, composition, and metabolites of intestinal microbiota in weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY Weaned piglets are often accompanied with impaired gastrointestinal tract and intestinal disorder affecting their growth. This study demonstrated that dietary BS DSM 32315 presented a beneficial role in gut health via regulating intestinal microbiota composition and metabolites.
Collapse
Affiliation(s)
- H Ding
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - X Zhao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - C Ma
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Q Gao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - X Kong
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - J He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Co-Innovation of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
7
|
He Y, Tang Y, Peng M, Xie G, Li W, Tan Z. Influence of Debaryomyces hansenii on bacterial lactase gene diversity in intestinal mucosa of mice with antibiotic-associated diarrhea. PLoS One 2019; 14:e0225802. [PMID: 31809511 PMCID: PMC6897403 DOI: 10.1371/journal.pone.0225802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023] Open
Abstract
AIM The current study aimed to investigate the effects of Debaryomyces hansenii on the diversity of bacterial lactase gene in the intestinal mucosa of antibiotic-associated diarrhea (AAD) mice. METHODS Eighteen mice were randomly divided into three groups (6 mice per group): healthy control group, diarrhea model group and D. hansenii treatment group. The antibiotic-associated diarrhea model was established by intragastric administration with a mixture of cephradine and gentamicin sulfate (23.33 mL·kg-1·d-1) twice a day for 5 days continuously. After establishing the AAD model, the mice in the D. hansenii treatment group were gavaged with D. hansenii for three days, while other groups were gavaged with distilled water. Then, the intestinal mucosa of all three groups was collected and DNA was extracted in an aseptic environment for the following analysis. RESULTS The difference in the richness and homogeneity of the bacterial lactase gene among all samples were inapparent, as the difference in the Chao1, ACE, Simpson and Shannon indices among the three groups were insignificant (P>0.05). NMDS analysis also showed that the distance of the samples among the three groups was unobvious. Furthermore, the bacterial lactase gene in the mucosa mainly originated from Actinobacteria, Firmicutes and Proteobacteria. Compared with the healthy control group, the abundance of lactase genes originating from Cupriavidus, Lysobacter, Citrobacter, Enterobacter and Pseudomonas was increased in the D. hansenii treatment group, while the lactase gene from Acidovorax and Stenotrophomonas decreased (p < 0.01 or p < 0.05) in the diarrhea model group and the D. hansenii treatment group. CONCLUSION D. hansenii was capable of improving the growth of some key lactase-producing bacteria like Deinococcus, Cupriavidus and Lysobacter for treating AAD.
Collapse
Affiliation(s)
- Yunshan He
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yuan Tang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Maijiao Peng
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guozhen Xie
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wenge Li
- Hunan Institute of Nuclear Agricultural Sciences and Space-induced Breeding, Changsha, Hunan province, China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Matsui D, Asano Y. Creation of thermostable l-tryptophan dehydrogenase by protein engineering and its application for l-tryptophan quantification. Anal Biochem 2019; 579:57-63. [DOI: 10.1016/j.ab.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
|
9
|
Asano Y. Screening and development of enzymes for determination and transformation of amino acids. Biosci Biotechnol Biochem 2019; 83:1402-1416. [PMID: 30621552 DOI: 10.1080/09168451.2018.1559027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high stereo- and substrate specificities of enzymes have been utilized for micro-determination of amino acids. Here, I review the discovery of l-Phe dehydrogenase and its practical use in the diagnosis of phenylketonuria in more than 5,400,000 neonates over two decades in Japan. Screening and uses of other selective enzymes for micro-determination of amino acids have also been discussed. In addition, novel enzymatic assays with the systematic use of known enzymes, including assays based on a pyrophosphate detection system using pyrophosphate dikinase for a variety of l-amino acids with amino-acyl-tRNA synthetase have been reviewed. Finally, I review the substrate specificities of a few amino acid-metabolizing enzymes that have been altered, using protein engineering techniques, mainly for production of useful chemicals, thus enabling the wider use of natural enzymes.
Collapse
Affiliation(s)
- Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Toyama , Japan
| |
Collapse
|
10
|
Adjogatse E, Erskine P, Wells SA, Kelly JM, Wilden JD, Chan AWE, Selwood D, Coker A, Wood S, Cooper JB. Structure and function of L-threonine-3-dehydrogenase from the parasitic protozoan Trypanosoma brucei revealed by X-ray crystallography and geometric simulations. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:861-876. [DOI: 10.1107/s2059798318009208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Two of the world's most neglected tropical diseases, human African trypanosomiasis (HAT) and Chagas disease, are caused by protozoan parasites of the genus Trypanosoma. These organisms possess specialized metabolic pathways, frequently distinct from those in humans, which have potential to be exploited as novel drug targets. This study elucidates the structure and function of L-threonine-3-dehydrogenase (TDH) from T. brucei, the causative pathogen of HAT. TDH is a key enzyme in the metabolism of L-threonine, and an inhibitor of TDH has been shown to have trypanocidal activity in the procyclic form of T. brucei. TDH is a nonfunctional pseudogene in humans, suggesting that it may be possible to rationally design safe and specific therapies for trypanosomiasis by targeting this parasite enzyme. As an initial step, the TDH gene from T. brucei was expressed and the three-dimensional structure of the enzyme was solved by X-ray crystallography. In multiple crystallographic structures, T. brucei TDH is revealed to be a dimeric short-chain dehydrogenase that displays a considerable degree of conformational variation in its ligand-binding regions. Geometric simulations of the structure have provided insight into the dynamic behaviour of this enzyme. Furthermore, structures of TDH bound to its natural substrates and known inhibitors have been determined, giving an indication of the mechanism of catalysis of the enzyme. Collectively, these results provide vital details for future drug design to target TDH or related enzymes.
Collapse
|
11
|
Nakano S, Motoyama T, Miyashita Y, Ishizuka Y, Matsuo N, Tokiwa H, Shinoda S, Asano Y, Ito S. Benchmark Analysis of Native and Artificial NAD +-Dependent Enzymes Generated by a Sequence-Based Design Method with or without Phylogenetic Data. Biochemistry 2018; 57:3722-3732. [PMID: 29787243 DOI: 10.1021/acs.biochem.8b00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full-consensus design (FCD) and ancestral-sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial l-threonine 3-dehydrogenases (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1, and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH); the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5 °C higher than that of CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were 2- and 7-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.
Collapse
Affiliation(s)
- Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Tomoharu Motoyama
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Yurina Miyashita
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yuki Ishizuka
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Naoya Matsuo
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Hiroaki Tokiwa
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Suguru Shinoda
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Yasuhisa Asano
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| |
Collapse
|
12
|
Motoyama T, Nakano S, Yamamoto Y, Tokiwa H, Asano Y, Ito S. Product Release Mechanism Associated with Structural Changes in Monomeric l-Threonine 3-Dehydrogenase. Biochemistry 2017; 56:5758-5770. [DOI: 10.1021/acs.biochem.7b00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoharu Motoyama
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuta Yamamoto
- Department
of Chemistry, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Hiroaki Tokiwa
- Department
of Chemistry, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
- Research
Center of Smart Molecules, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sohei Ito
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
13
|
Liu Y, Li F, Zhang X, Cao G, Jiang W, Sun Y, Zheng P, Zhang D. A fast and sensitive coupled enzyme assay for the measurement of l-threonine and application to high-throughput screening of threonine-overproducing strains. Enzyme Microb Technol 2014; 67:1-7. [DOI: 10.1016/j.enzmictec.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022]
|
14
|
Kameya M, Asano Y. Rapid enzymatic assays for l-citrulline and l-arginine based on the platform of pyrophosphate detection. Enzyme Microb Technol 2014; 57:36-41. [DOI: 10.1016/j.enzmictec.2014.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/13/2022]
|
15
|
Nakano S, Okazaki S, Tokiwa H, Asano Y. Binding of NAD+ and L-threonine induces stepwise structural and flexibility changes in Cupriavidus necator L-threonine dehydrogenase. J Biol Chem 2014; 289:10445-10454. [PMID: 24558034 DOI: 10.1074/jbc.m113.540773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Crystal structures of short chain dehydrogenase-like L-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD(+) nor L-Thr were bound: residues 38-59, residues 77-87, residues 180-186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD(+) was bound to CnThrDH: residues 80-87, residues 180-186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD(+) binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the kcat/Km, L-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when L-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD(+) and L-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like L-threonine dehydrogenase are important for the reactivity and specificity of the enzyme.
Collapse
Affiliation(s)
- Shogo Nakano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Seiji Okazaki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiroaki Tokiwa
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Research Center of Smart Molecules, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
16
|
Kameya M, Himi M, Asano Y. Rapid and selective enzymatic assay for L-methionine based on a pyrophosphate detection system. Anal Biochem 2013; 447:33-8. [PMID: 24239571 DOI: 10.1016/j.ab.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/14/2022]
Abstract
An enzymatic assay for L-methionine was developed by coupling adenosylmethionine synthetase (AdoMetS) to a pyrophosphate (PP(i)) detection system, which was constructed using pyruvate, phosphate dikinase. To expand the use of this assay, the PP(i) detection system was embodied as three different forms, which allowed PP(i) to be measured by UV, visible, and fluorescent light detectors. The assay system was robust and could tolerate the addition of inorganic phosphate and ATP to the assay mixtures. L-Methionine could be accurately determined by coupling the PP(i) detection system and AdoMetS. This AdoMetS coupling assay was highly selective to L-methionine and exhibited no significant activity to other proteinaceous amino acids, ammonia, or urea, unlike conventional enzymatic assays for L-methionine. Spike and recovery tests showed that the AdoMetS assay could accurately and reproducibly determine increases in L-methionine in human plasma samples without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. The high selectivity and robustness of the AdoMetS assay provide rapid and high-throughput analysis of L-methionine in various kinds of analytes.
Collapse
Affiliation(s)
- Masafumi Kameya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Mariko Himi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
17
|
Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. MICROBIOLOGY-SGM 2013; 159:1437-1446. [PMID: 23637459 DOI: 10.1099/mic.0.066258-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.
Collapse
Affiliation(s)
- Sylvia I Pavlova
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ling Jin
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stephen R Gasparovich
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lin Tao
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Yoneda K, Sakuraba H, Araki T, Ohshima T. Crystal structure of binary and ternary complexes of archaeal UDP-galactose 4-epimerase-like L-threonine dehydrogenase from Thermoplasma volcanium. J Biol Chem 2012; 287:12966-74. [PMID: 22374996 DOI: 10.1074/jbc.m111.336958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gene from the thermophilic archaeon Thermoplasma volcanium encoding an L-threonine dehydrogenase (L-ThrDH) with a predicted amino acid sequence that was remarkably similar to the sequence of UDP-galactose 4-epimerase (GalE) was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was moderately thermostable, retaining more than 90% of its activity after incubation for 10 min at up to 70 °C. The catalytic residue was assessed using site-directed mutagenesis, and Tyr(137) was found to be essential for catalysis. To clarify the structural basis of the catalytic mechanism, four different crystal structures were determined using the molecular replacement method: L-ThrDH-NAD(+), L-ThrDH in complex with NAD(+) and pyruvate, Y137F mutant in complex with NAD(+) and L-threonine, and Y137F in complex with NAD(+) and L-3-hydroxynorvaline. Each monomer consisted of a Rossmann-fold domain and a C-terminal catalytic domain, and the fold of the catalytic domain showed notable similarity to that of the GalE-like L-ThrDH from the psychrophilic bacterium Flavobacterium frigidimaris KUC-1. The substrate binding model suggests that the reaction proceeds through abstraction of the β-hydroxyl hydrogen of L-threonine via direct proton transfer driven by Tyr(137). The factors contributing to the thermostability of T. volcanium L-ThrDH were analyzed by comparing its structure to that of F. frigidimaris L-ThrDH. This comparison showed that the presence of extensive inter- and intrasubunit ion pair networks are likely responsible for the thermostability of T. volcanium L-ThrDH. This is the first description of the molecular basis for the substrate recognition and thermostability of a GalE-like L-ThrDH.
Collapse
Affiliation(s)
- Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-1404, Japan
| | | | | | | |
Collapse
|