1
|
Kelsall IR, McCrory EH, Xu Y, Scudamore CL, Nanda SK, Mancebo-Gamella P, Wood NT, Knebel A, Matthews SJ, Cohen P. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO J 2022; 41:e109700. [PMID: 35274759 PMCID: PMC9016349 DOI: 10.15252/embj.2021109700] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
HOIL-1, a component of the linear ubiquitin chain assembly complex (LUBAC), ubiquitylates serine and threonine residues in proteins by esterification. Here, we report that mice expressing an E3 ligase-inactive HOIL-1[C458S] mutant accumulate polyglucosan in brain, heart and other organs, indicating that HOIL-1's E3 ligase activity is essential to prevent these toxic polysaccharide deposits from accumulating. We found that HOIL-1 monoubiquitylates glycogen and α1:4-linked maltoheptaose in vitro and identify the C6 hydroxyl moiety of glucose as the site of ester-linked ubiquitylation. The monoubiquitylation of maltoheptaose was accelerated > 100-fold by the interaction of Met1-linked or Lys63-linked ubiquitin oligomers with the RBR domain of HOIL-1. HOIL-1 also transferred pre-formed ubiquitin oligomers to maltoheptaose en bloc, producing polyubiquitylated maltoheptaose in one catalytic step. The Sharpin and HOIP components of LUBAC, but not HOIL-1, bound to unbranched and infrequently branched glucose polymers in vitro, but not to highly branched mammalian glycogen, suggesting a potential function in targeting HOIL-1 to unbranched glucosaccharides in cells. We suggest that monoubiquitylation of unbranched glucosaccharides may initiate their removal from cells, preventing precipitation as polyglucosan.
Collapse
Affiliation(s)
- Ian R Kelsall
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elisha H McCrory
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Yingqi Xu
- Cross-Faculty NMR Centre, Department of Life Sciences, Imperial College London, London, UK
| | | | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paula Mancebo-Gamella
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Stephen J Matthews
- Cross-Faculty NMR Centre, Department of Life Sciences, Imperial College London, London, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Cardote TAF, Gadd MS, Ciulli A. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex. Structure 2018; 25:901-911.e3. [PMID: 28591624 PMCID: PMC5462531 DOI: 10.1016/j.str.2017.04.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
Cullin RING E3 ubiquitin ligases (CRLs) function in the ubiquitin proteasome system to catalyze the transfer of ubiquitin from E2 conjugating enzymes to specific substrate proteins. CRLs are large dynamic complexes and attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. The atomic details of whole CRL assembly and interactions that dictate subunit specificity remain elusive. Here we present the crystal structure of a pentameric CRL2VHL complex, composed of Cul2, Rbx1, Elongin B, Elongin C, and pVHL. The structure traps a closed state of full-length Cul2 and a new pose of Rbx1 in a trajectory from closed to open conformation. We characterize hotspots and binding thermodynamics at the interface between Cul2 and pVHL-EloBC and identify mutations that contribute toward a selectivity switch for Cul2 versus Cul5 recognition. Our findings provide structural and biophysical insights into the whole Cul2 complex that could aid future drug targeting.
Collapse
Affiliation(s)
- Teresa A F Cardote
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Morgan S Gadd
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
3
|
Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A 2017; 114:E3481-E3489. [PMID: 28404732 DOI: 10.1073/pnas.1702367114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is widely accepted that the essential role of TRAF6 in vivo is to generate the Lys63-linked ubiquitin (K63-Ub) chains needed to activate the "master" protein kinase TAK1. Here, we report that TRAF6 E3 ligase activity contributes to but is not essential for the IL-1-dependent formation of K63-Ub chains, TAK1 activation, or IL-8 production in human cells, because Pellino1 and Pellino2 generate the K63-Ub chains required for signaling in cells expressing E3 ligase-inactive TRAF6 mutants. The IL-1-induced formation of K63-Ub chains and ubiquitylation of IRAK1, IRAK4, and MyD88 was abolished in TRAF6/Pellino1/Pellino2 triple-knockout (KO) cells, but not in TRAF6 KO or Pellino1/2 double-KO cells. The reexpression of E3 ligase-inactive TRAF6 mutants partially restored IL-1 signaling in TRAF6 KO cells, but not in TRAF6/Pellino1/Pellino2 triple-KO cells. Pellino1-generated K63-Ub chains activated the TAK1 complex in vitro with similar efficiently to TRAF6-generated K63-Ub chains. The early phase of TLR signaling and the TLR-dependent secretion of IL-10 (controlled by IRAKs 1 and 2) was only reduced modestly in primary macrophages from knockin mice expressing the E3 ligase-inactive TRAF6[L74H] mutant, but the late-phase production of IL-6, IL-12, and TNFα (controlled only by the pseudokinase IRAK2) was abolished. RANKL-induced signaling in macrophages and the differentiation of bone marrow to osteoclasts was similar in TRAF6[L74H] and wild-type cells, explaining why the bone structure and teeth of the TRAF6[L74H] mice was normal, unlike TRAF6 KO mice. We identify two essential roles of TRAF6 that are independent of its E3 ligase activity.
Collapse
|
4
|
Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K. CUL-2 LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 2017; 19:468-479. [PMID: 28368371 PMCID: PMC5410169 DOI: 10.1038/ncb3500] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2LRR-1 associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2LRR1 as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Priego Moreno
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
5
|
Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, Al Maskari RS, Ferryman JT, Hardege I, Yasmin, Figg NL, Enchev R, Knebel A, O'Shaughnessy KM, Kurz T. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 2015; 7:1285-1306. [PMID: 26286618 PMCID: PMC4604684 DOI: 10.15252/emmm.201505444] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Deletion of exon 9 from Cullin-3 (CUL3, residues 403-459: CUL3(Δ403-459)) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3(Δ403-459), is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3(Δ403-459) auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3(WT) (/Δ403-459) closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
Collapse
Affiliation(s)
- Frances-Rose Schumacher
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Keith Siew
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah E Cleary
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Raya S Al Maskari
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - James T Ferryman
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Iris Hardege
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Yasmin
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Thimo Kurz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
6
|
Kazlauskaite A, Martínez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, Johnson C, Zhang J, Hope AG, Peggie M, Trost M, van Aalten DMF, Alessi DR, Prescott AR, Knebel A, Walden H, Muqit MMK. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 2015; 16:939-954. [PMID: 26116755 PMCID: PMC4552487 DOI: 10.15252/embr.201540352] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023] Open
Abstract
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin activators that mimic the effect of ubiquitin(Phospho-Ser65).
Collapse
Affiliation(s)
- Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - R Julio Martínez-Torres
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Scott Wilkie
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences University of Dundee, Dundee, UK
| | - Atul Kumar
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Alba Gonzalez
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Anthony G Hope
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences University of Dundee, Dundee, UK
| | - Mark Peggie
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Alan R Prescott
- Division of Cell Signalling and Immunology, College of Life Sciences University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK College of Medicine, Dentistry & Nursing University of Dundee, Dundee, UK
| |
Collapse
|
7
|
Bulatov E, Martin EM, Chatterjee S, Knebel A, Shimamura S, Konijnenberg A, Johnson C, Zinn N, Grandi P, Sobott F, Ciulli A. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). J Biol Chem 2014; 290:4178-91. [PMID: 25505247 PMCID: PMC4326827 DOI: 10.1074/jbc.m114.616664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5(SOCS2)), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5(SOCS2) can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5(SOCS2) complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5(SOCS2) was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5(SOCS2) complexes is supported by traveling wave ion mobility mass spectrometry data.
Collapse
Affiliation(s)
- Emil Bulatov
- From the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, and the Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Esther M Martin
- the Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and
| | - Sneha Chatterjee
- the Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and
| | - Axel Knebel
- the Medical Research Council Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Center, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | - Albert Konijnenberg
- the Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and
| | - Clare Johnson
- the Medical Research Council Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Center, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Nico Zinn
- Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paola Grandi
- Cellzome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Frank Sobott
- the Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and
| | - Alessio Ciulli
- From the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, and the Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom,
| |
Collapse
|
8
|
Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, Kelly SM, Wood NT, Virdee S, Gray NS, Morrice NA, Alessi DR, Trost M. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun 2014; 5:4763. [PMID: 25159004 PMCID: PMC4147353 DOI: 10.1038/ncomms5763] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analysing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAB/MPN/Mov34 metalloenzyme DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs. Deubiquitylases (DUBs) remove ubiquitin chains from proteins. Here the authors develop a mass spectrometry-based DUB activity screen using unmodified diubiquitin isomers to characterize substrate specificity for 42 human DUBs, and assess the potency and selectivity of 11 DUB inhibitors.
Collapse
Affiliation(s)
- Maria Stella Ritorto
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Richard Ewan
- 1] MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK [2]
| | - Ana B Perez-Oliva
- 1] MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK [2]
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sara J Buhrlage
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, SGM 628, Boston, Massachusetts 02115, USA
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sharon M Kelly
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nathanael S Gray
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, SGM 628, Boston, Massachusetts 02115, USA
| | - Nicholas A Morrice
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
9
|
Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Biochem J 2014; 460:237-46. [PMID: 24641320 PMCID: PMC4019986 DOI: 10.1042/bj20140153] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension. WNK kinases regulate mammalian blood pressure. The level of WNK protein in a cell is regulated by the KLHL3–CUL3 ubiquitin ligase. We define the interaction between KLHL3 and WNK, identifying the WNK degron, and present the crystal structure of the KLHL3–WNK degron complex.
Collapse
|
10
|
Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 2013; 4:1641. [PMID: 23535662 DOI: 10.1038/ncomms2628] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
Cullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange.
Collapse
Affiliation(s)
- Aleksandra Zemla
- Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Kelsall IR, Duda DM, Olszewski JL, Hofmann K, Knebel A, Langevin F, Wood N, Wightman M, Schulman BA, Alpi AF. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J 2013; 32:2848-60. [PMID: 24076655 PMCID: PMC3817463 DOI: 10.1038/emboj.2013.209] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/04/2013] [Indexed: 11/26/2022] Open
Abstract
RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto-ubiquitylation, their ability to stimulate dissociation of a thioester-linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin-vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL-induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs. Ubiquitin ligases of the distinct Cullin-RING ligase (CRL) and RING-between-RING (RBR) families physically and functionally interact, suggesting how RBR ligase auto-inhibition may be relieved in Ariadne-subfamily members.
Collapse
Affiliation(s)
- Ian R Kelsall
- 1] Scottish Institute for Cell Signalling, College of Life Sciences, University of Dundee, Dundee, UK [2] Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 2013; 451:111-22. [PMID: 23387299 PMCID: PMC3632089 DOI: 10.1042/bj20121903] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The WNK (with no lysine kinase)–SPAK (SPS1-related proline/alanine-rich kinase)/OSR1
(oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling
mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent
studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3
(Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form
Cullin–RING E3 ubiquitin ligase complexes. To explore how a CUL3–KLHL3 complex might
operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and
CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC
(Na+/Cl− co-transporter)/NKCC1
(Na+/K+/2Cl− co-transporter 1)]. Strikingly, 13 out of the
15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant
wild-type CUL3–KLHL3 E3 ligase complex, but not a disease-causing CUL3–KLHL3[R528H]
mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small
interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in
HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues
479–667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated
in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K]
and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479–667] fragment,
abolished the ability to interact with KLHL3. These results suggest that the CUL3–KLHL3 E3
ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK
isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that
cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure
by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney
by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how
mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical
cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.
Collapse
|