1
|
Gill JK, Shaw GS. Using Förster Resonance Energy Transfer (FRET) to Understand the Ubiquitination Landscape. Chembiochem 2024; 25:e202400193. [PMID: 38632088 DOI: 10.1002/cbic.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Förster resonance energy transfer (FRET) is a fluorescence technique that allows quantitative measurement of protein interactions, kinetics and dynamics. This review covers the use of FRET to study the structures and mechanisms of ubiquitination and related proteins. We survey FRET assays that have been developed where donor and acceptor fluorophores are placed on E1, E2 or E3 enzymes and ubiquitin (Ub) to monitor steady-state and real-time transfer of Ub through the ubiquitination cascade. Specialized FRET probes placed on Ub and Ub-like proteins have been developed to monitor Ub removal by deubiquitinating enzymes (DUBs) that result in a loss of a FRET signal upon cleavage of the FRET probes. FRET has also been used to understand conformational changes in large complexes such as multimeric E3 ligases and the proteasome, frequently using sophisticated single molecule methods. Overall, FRET is a powerful tool to help unravel the intricacies of the complex ubiquitination system.
Collapse
Affiliation(s)
- Jashanjot Kaur Gill
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A5C1
| |
Collapse
|
2
|
Lee MY, Haam CE, Mun J, Lim G, Lee BH, Oh KS. Development of a FOXM1-DBD Binding Assay for High-Throughput Screening Using TR-FRET Assay. Biol Pharm Bull 2021; 44:1484-1491. [PMID: 34602556 DOI: 10.1248/bpb.b21-00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophoretic mobility shift assay (EMSA) technology has been widely employed for the analysis of transcription factors such as Forkhead box protein M1 (FOXM1). However, the application of high-throughput screening (HTS) in performing, such analyses are limited as it uses time consuming electrophoresis procedure and radioisotopes. In this study, we developed a FOXM1-DNA binding domain (DBD) binding assay based on time-resolved fluorescence energy transfer (TR-FRET) that enables HTS for the inhibitors of FOXM1-DNA interaction. This assay was robust, highly reproducible and could be easily miniaturized into 384-well plate format. The signal-to-background (S/B) ratio and Z' factor were calculated as 7.46 and 0.74, respectively, via a series of optimization of the assay conditions. A pilot library screening of 1019 natural compounds was performed using the FOXM1-DBD binding assay. Five hit compounds, namely, AC1LXM, BRN5, gangaleoidin, leoidin, and roemerine were identified as the inhibitors of FOXM1. In a cell viability assay, it was demonstrated that cell proliferation of FOXM1 overexpressed cell lines was suppressed in cell lines such as MDA-MB-231 and MCF-7 by five hit compounds. These results indicate that developed FOXM1-DBD binding assay can be applied to highly efficiency HTS of compound libraries.
Collapse
Affiliation(s)
- Mi Young Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Chae Eun Haam
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Jihye Mun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Gyutae Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology
| | - Byung Ho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology.,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
3
|
Saldana M, VanderVorst K, Berg AL, Lee H, Carraway KL. Otubain 1: a non-canonical deubiquitinase with an emerging role in cancer. Endocr Relat Cancer 2019; 26:R1-R14. [PMID: 30400005 PMCID: PMC6226034 DOI: 10.1530/erc-18-0264] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
The ubiquitin system regulates diverse biological processes, many involved in cancer pathogenesis, by altering the ubiquitination state of protein substrates. This is accomplished by ubiquitin ligases and deubiquitinases (DUBs), which respectively add or remove ubiquitin from substrates to alter their stability, activity, localization and interactions. While lack of catalytic activity makes therapeutic targeting of ubiquitin ligases difficult, DUB inhibitors represent an active area of research and the identification of cancer-associated DUBs may lead to the development of novel therapeutics. A growing body of literature demonstrates that the DUB Otubain 1 (OTUB1) regulates many cancer-associated signaling pathways including MAPK, ERa, epithelial-mesenchymal transition (EMT), RHOa, mTORC1, FOXM1 and P53 to promote tumor cell survival, proliferation, invasiveness and therapeutic resistance. In addition, clinical studies have associated elevated OTUB1 expression with high grade, invasiveness and metastasis in several tumor types including lung, breast, ovarian, glioma, colon and gastric. Interestingly, in addition to catalytic DUB activity, OTUB1 displays a catalytic-independent, non-canonical activity where it inhibits the transfer of ubiquitin onto protein substrates by sequestration of E2 ubiquitin-conjugating enzymes. The aim of this review is to describe the canonical and non-canonical activities of OTUB1, summarize roles for OTUB1 in cancer-associated pathways and discuss its potential therapeutic targeting.
Collapse
Affiliation(s)
- Matthew Saldana
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| |
Collapse
|
4
|
Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Haydon PG, Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 2018; 13:6. [PMID: 29391027 PMCID: PMC5796504 DOI: 10.1186/s13024-018-0239-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. METHOD In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. RESULTS In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. CONCLUSION This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.
Collapse
Affiliation(s)
- WonHee Kim
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Liang Ma
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Selene Lomoio
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Rachel Willen
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Sylvia Lombardo
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Jinghui Dong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Giuseppina Tesco
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
5
|
Abstract
Although growing numbers of oncoproteins and pro-metastatic proteins have been extensively characterized, many of these tumor-promoting proteins are not good drug targets, which represent a major barrier to curing breast cancer and other cancers. There is a need, therefore, for alternative therapeutic approaches to destroying cancer-promoting proteins. The human genome encodes approximately 100 deubiquitinating enzymes (DUBs, also called deubiquitinases), which are amenable to pharmacologic inhibition by small molecules. By removing monoubiquitin or polyubiquitin chains from the target protein, DUBs can modulate the degradation, localization, activity, trafficking, and recycling of the substrate, thereby contributing substantially to the regulation of cancer proteins and pathways. Targeting certain DUBs may lead to destabilization or functional inactivation of some key oncoproteins or pro-metastatic proteins, including non-druggable ones, which will provide therapeutic benefits to cancer patients. In breast cancer, growing numbers of DUBs are found to be aberrantly expressed. Depending on their substrates, specific DUBs can either promote or suppress mammary tumors. In this article, we review the role and mechanisms of action of DUBs in breast cancer and discuss the potential of targeting DUBs for cancer treatment.
Collapse
|
6
|
Ott CA, Baljinnyam B, Zakharov AV, Jadhav A, Simeonov A, Zhuang Z. Cell Lysate-Based AlphaLISA Deubiquitinase Assay Platform for Identification of Small Molecule Inhibitors. ACS Chem Biol 2017; 12:2399-2407. [PMID: 28836754 DOI: 10.1021/acschembio.7b00543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The deubiquitinases, or DUBs, are associated with various human diseases, including neurological disorders, cancer, and viral infection, making them excellent candidates for pharmacological intervention. Drug discovery campaigns against DUBs require enzymatic deubiquitination assays amenable for high-throughput screening (HTS). Although several DUB substrates and assays have been developed in recent years, they are largely limited to recombinantly purified DUBs. Many DUBs are large multidomain proteins that are difficult to obtain recombinantly in sufficient quantities for HTS. Therefore, an assay that obviates the need of recombinant protein generation and also recapitulates a physiologically relevant environment is highly desirable. Such an assay will open doors for drug discovery against many therapeutically relevant, but currently inaccessible, DUBs. Here, we report a cell lysate DUB assay based on AlphaLISA technology for high throughput screening. This assay platform uses a biotin-tagged ubiquitin probe and a HA-tagged DUB expressed in human cells. The assay was validated and adapted to a 1536-well format, which enabled a screening against UCHL1 as proof of principle using a library of 15 000 compounds. We expect that the new platform can be readily adapted to other DUBs to allow the identification of more potent and selective small molecule inhibitors and chemical probes.
Collapse
Affiliation(s)
- Christine A. Ott
- Department
of Chemistry and Biochemistry, University of Delaware, 214A Drake
Hall, Newark, Delaware 19716, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Zhihao Zhuang
- Department
of Chemistry and Biochemistry, University of Delaware, 214A Drake
Hall, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Kim TG, Lee JH, Lee MY, Kim KU, Lee JH, Park CH, Lee BH, Oh KS. Development of a High-Throughput Assay for Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1 Based on Time-Resolved Fluorescence Energy Transfer. Biol Pharm Bull 2017; 40:1454-1462. [PMID: 28867728 DOI: 10.1248/bpb.b17-00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although enzyme-linked immunosorbent assay (ELISA) technology has been widely accepted for binding assays against the polo-box domain (PBD) of polo-like kinase-1 (Plk1), these assays have a limitation-related heterogeneous procedure, such as multiple incubations and washing steps to apply high-throughput screenings (HTSs). In the present study, a Plk1-PBD binding assay based on time-resolved fluorescence energy transfer (TR-FRET) was developed for HTS of PBD-binding inhibitors. The TR-FRET-based Plk1-PBD binding assay is sensitive and robust and can be miniaturized into the 384-well plate-based format. Compared with the ELISA-based Plk1-PBD binding assay (Z' factor, 0.53; signal-to-background ratio, 4.19), the TR-FRET-based Plk1-PBD binding assay improved the Z' factor (0.72) and signal-to-background ratio (8.16). Using TR-FRET based Plk1-PBD binding assay, pilot library screening of 1019 natural compounds was conducted and five hit compounds such as haematoxylin, verbascoside, menadione, lithospermic acid and (1,3-dioxolo[4,5-g]isoquinolinium 5,6,7,8-tetrahydro-4-methoxy-6,6-dimethyl-5-[2-oxo-2-(2-pyridinyl)ethyl]-iodide) (DITMD) were identified as Plk1-PBD inhibitor. In a functional assay to validate the hit compounds, five hit compounds exhibited suppression of HeLa cells proliferation. These results suggest that TR-FRET-based Plk1-PBD binding assay can be applied for an efficient and less time-consuming HTS of compound libraries.
Collapse
Affiliation(s)
- Tae Gi Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
| | - Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Chi Hoon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Graduate School of New Drug Discovery and Development, Chungnam National University
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
8
|
Yeates EFA, Tesco G. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation. J Biol Chem 2016; 291:15753-66. [PMID: 27302062 DOI: 10.1074/jbc.m116.718023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.
Collapse
Affiliation(s)
| | - Giuseppina Tesco
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
9
|
Hameed DS, Sapmaz A, Ovaa H. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction. Bioconjug Chem 2016; 28:805-815. [PMID: 27077728 DOI: 10.1021/acs.bioconjchem.6b00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.
Collapse
Affiliation(s)
- Dharjath S Hameed
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aysegul Sapmaz
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center , Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
10
|
Eustis IC, Huang J, Pilkerton ME, Whedon SD, Chatterjee C. A time-resolved Förster resonance energy transfer assay to measure activity of the deamidase of the prokaryotic ubiquitin-like protein. Anal Biochem 2015. [PMID: 26205584 DOI: 10.1016/j.ab.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modification of proteins in Mycobacterium tuberculosis (Mtb) by the prokaryotic ubiquitin-like protein (Pup) targets them for degradation by mycobacterial proteasomes. Although functionally similar to eukaryotic deubiquitylating enzymes, the deamidase of Pup, called Dop, has no known mammalian homologs. Because Dop is necessary for persistent infection by Mtb, its selective inhibition holds potential for tuberculosis therapy. To facilitate high-throughput screens for Dop inhibitors, we developed a time-resolved Förster resonance energy transfer (TR-FRET)-based assay for Dop function. The TR-FRET assay was successfully applied to determine the Michaelis constant for adenosine triphosphate (ATP) binding and to test the cofactor tolerance of Dop.
Collapse
Affiliation(s)
- Ian C Eustis
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Jessica Huang
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Meagan E Pilkerton
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Samuel D Whedon
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98115, USA.
| |
Collapse
|
11
|
Nicholson B, Kumar S, Agarwal S, Eddins MJ, Marblestone JG, Wu J, Kodrasov MP, LaRocque JP, Sterner DE, Mattern MR. Discovery of Therapeutic Deubiquitylase Effector Molecules. ACTA ACUST UNITED AC 2014; 19:989-99. [DOI: 10.1177/1087057114527312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Abstract
The approval of proteasome inhibitors bortezomib and carfilzomib and the E3 ligase antagonist thalidomide and its analogs, lenalidomide and pomalidomide, validates the ubiquitin–proteasome pathway as a source of novel drugs for treating cancer and, potentially, a variety of devastating illnesses, including inflammation, cardiovascular disease, and neurodegenerative disease. All elements of this critical regulatory pathway—the proteasome itself, E3 ligases (which conjugate ubiquitin to target proteins), and deubiquitylating enzymes (which deconjugate ubiquitin, reversing ligase action)—are potential therapeutic targets, and all have been worked on extensively during the past decade. No deubiquitylase inhibitors or activators have yet progressed to clinical trial, however, despite compelling target validation and several years of high-throughput screening and preclinical development of hits by numerous pharmaceutical companies, biotechnology organizations, and academic groups. The appropriateness of deubiquitylases as therapeutic targets in many disease areas is reviewed, followed by evidence that selective inhibitors of these cysteine proteases can be discovered. Because the lack of progress in drug-discovery efforts with deubiquitylases suggests a need for improved discovery methodologies, currently available platforms and strategies are analyzed, and improved or completely novel, unrelated approaches are considered in terms of their likelihood of producing clinically viable effectors of deubiquitylases.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Wu
- Progenra, Inc., Malvern, PA, USA
| | | | | | | | | |
Collapse
|
12
|
Davies CW, Paul LN, Das C. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 2013; 52:7818-29. [PMID: 24151880 DOI: 10.1021/bi401106b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMSH, a deubiquitinating enzyme (DUB) with exquisite specificity for Lys63-linked polyubiquitin chains, is an endosome-associated DUB that regulates sorting of activated cell-surface signaling receptors to the lysosome, a process mediated by the members of the endosomal sorting complexes required for transport (ESCRT) machinery. Whole-exome sequencing of DNA samples from children with microcephaly capillary malformation (MIC-CAP) syndrome identified recessive mutations encoded in the AMSH gene causatively linked to the disease. Herein, we report a number of important observations that significantly advance our understanding of AMSH within the context of the ESCRT machinery. First, we performed mutational and kinetic analysis of the putative residues involved in diubiquitin recognition and catalysis with a view of better understanding the catalytic mechanism of AMSH. Our mutational and kinetic analysis reveals that recognition of the proximal ubiquitin is imperative for the linkage specificity and catalytic efficiency of the enzyme. The MIC-CAP disease mutation, Thr313Ile, yields a substantial loss of catalytic activity without any significant change in the thermodynamic stability of the protein, indicating that its perturbed catalytic activity is the basis of the disease. The catalytic activity of AMSH is stimulated upon binding to the ESCRT-0 member STAM; however, the precise mechanism and its significance are not known. On the basis of a number of biochemical and biophysical analyses, we are able to propose a model for activation according to which activation of AMSH is allowed by facile, simultaneous binding to two ubiquitin groups in a polyubiquitin substrate, one by the catalytic domain of the DUB (binding to the distal ubiquitin) and the other (the proximal ubiquitin) by the ubiquitin interacting motif (UIM) from STAM. Such a mode of binding would stabilize the ubiquitin chain in a productive orientation, resulting in an enhancement of the activity of the enzyme. These data together provide a mechanism for understanding the recruitment and activation of AMSH at ESCRT-0, providing biochemical and biophysical evidence that supports a role for AMSH when it is recruited to the initial ESCRT complex: it functions to facilitate the transfer of ubiquitinated receptors (cargo) from one ESCRT member to the next by disassembling the polyubiquitin chain while leaving some ubiquitin groups still attached to the cargo.
Collapse
Affiliation(s)
- Christopher W Davies
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|