1
|
Talma M, Maślanka M, Mucha A. Recent developments in the synthesis and applications of phosphinic peptide analogs. Bioorg Med Chem Lett 2019; 29:1031-1042. [PMID: 30846252 DOI: 10.1016/j.bmcl.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
Synthetic pseudopeptides that fit well with the active site architecture allow the most effective binding to enzymes, similar to native substrates in high-energy transition states. Phosphinic acid peptide analogs that comprise the tetrahedral phosphorus moiety introduced to replace an internal amide bond exert such an isosteric or isoelectronic resemblance, combined with providing other advantageous features, for example, metal complexing properties. Accordingly, they are capable of inhibiting metal-dependent enzymes involved in biological functions in eukaryotic and prokaryotic cells. These enzymes are associated with notorious human diseases, such as cancer, e.g., matrix metalloproteinases, or are etiological factors of protozoal and bacterial infections, e.g., metalloaminopeptidases. The affinity and selectivity of these compounds can be conveniently adjusted, either by structural modification of dedicated side chains or by backbone elongation to enhance specific interactions with the corresponding binding pockets. Recent approaches to the synthesis of these compounds are illustrated by examples of the preparation of rationally designed structures of inhibitors of particular enzymes. Activity against appealing enzymatic targets is presented, along with the molecular mechanisms of action and therapeutic implications. Innovative aspects of phosphinic peptide application, e.g., as activity-based probes, and ligands of complexes of radioisotopes for nuclear medicine are also outlined.
Collapse
Affiliation(s)
- Michał Talma
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maślanka
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Wang H, Xue K, Li P, Yang Y, He Z, Zhang W, Zhang W, Tang B. In Vivo Two-Photon Fluorescence Imaging of the Activity of the Inflammatory Biomarker LTA4H in a Mouse Pneumonia Model. Anal Chem 2018; 90:6020-6027. [DOI: 10.1021/acs.analchem.7b04885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ke Xue
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Yuyun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zixu He
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
3
|
Synthesis, characterization, and biological study of phenylalanine amide derivatives. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1700-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library. Biochimie 2015; 122:31-7. [PMID: 26449746 DOI: 10.1016/j.biochi.2015.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
Aminopeptidases are exopeptidases that process peptide bonds at the N-terminus of protein substrates, and they are involved in controlling several metabolic pathways. Due to their involvement in diseases such as cancer or rheumatoid arthritis, their presence can also be used as a predictive biomarker. Here, we used a library of fluorogenic substrates containing natural and unnatural amino acids to reliably measure the aminopeptidase N (APN) activity in cell lysates obtained from human, pig and rat kidneys. We compared our results to the substrate specificity profile of isolated APN. Our data strongly support the observation that fluorogenic substrates can be successfully used to identify aminopeptidases and to measure their activity in cell lysates. Moreover, in contrast to assays using single substrates, which can result in overlapping specificity due to cleavage by several aminopeptidases, our library fingerprint can provide information about single enzymes.
Collapse
|
5
|
Bonnard E, Poras H, Nadal X, Maldonado R, Fournié-Zaluski MC, Roques BP. Long-lasting oral analgesic effects of N-protected aminophosphinic dual ENKephalinase inhibitors (DENKIs) in peripherally controlled pain. Pharmacol Res Perspect 2015; 3:e00116. [PMID: 25692029 PMCID: PMC4324690 DOI: 10.1002/prp2.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
The peripheral endogenous opioid system is critically involved in neuropathic and inflammatory pain generation as suggested by the modulation of opioid receptors expression and enkephalins (ENKs) release observed in these painful conditions. Accordingly, an innovative approach in the treatment of these nocifensive events is to increase and maintain high local concentrations of extracellular pain-evoked ENKs, by preventing their physiological enzymatic inactivation by two Zn metallopeptidases, the neutral endopeptidase (NEP, neprilysin, EC 3.4.24.11) and the neutral aminopeptidase (APN, EC 3.4.11.2). With this aim, new orally active dual ENKephalinase inhibitors (DENKIs) were designed as soluble prodrugs by introducing a N-terminal cleavable carbamate in the previously described aminophosphinic inhibitors. This induces long-lasting antinociceptive responses after oral administration, in various rodent models of inflammatory and neuropathic pain. These responses are mediated through stimulation of peripheral opioid receptors by DENKIs-protected ENKs as demonstrated by naloxone methiodide reversion. In all tested models, the most efficient prodrug 2a (PL265) was active, at least during 150–180 min, after single oral administration of 25–50 mg/kg in mice and of 100–200 mg/kg in rats. In models of neuropathic pain, both hyperalgesia and allodynia were markedly reduced. Interestingly, combination of inactive doses of 2a (PL265) and of the anti-epileptic drug gabapentin had synergistic effect on neuropathic pain. Pharmacokinetic studies of 2a (PL265) in rats show that the active drug is the only generated metabolite produced. These encouraging results have made 2a (PL265) a suitable candidate for clinical development.
Collapse
Affiliation(s)
| | | | - Xavier Nadal
- Laboratori de Neurofarmacologia, Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona (PRBB) Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona (PRBB) Barcelona, Spain
| | | | - Bernard P Roques
- Pharmaleads 75013, Paris, France ; Université Paris-Descartes 75006, Paris, France
| |
Collapse
|
6
|
Górniak MGV, Czernicka A, Młynarz P, Balcerzak W, Kafarski P. Synthesis of fluorescent (benzyloxycarbonylamino)(aryl)methylphosphonates. Beilstein J Org Chem 2014; 10:741-5. [PMID: 24778727 PMCID: PMC3999870 DOI: 10.3762/bjoc.10.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/12/2014] [Indexed: 11/23/2022] Open
Abstract
The synthesis of a library of structurally variable aromatic esters of (benzyloxycarbonylamino)(aryl)methylphosphonic acids is described by means of the Oleksyszyn reaction. The library was enlarged by the application of a Suzuki–Miayra approach and by preparation of mixed esters.
Collapse
Affiliation(s)
- Michał Górny Vel Górniak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland ; Department of Chemistry, University of Opole, pl. Kopernika 11a, 45-040 Opole, Poland
| | - Anna Czernicka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Młynarz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Waldemar Balcerzak
- First Department of General, Gastroenterological and Endocrinological Surgery, Wroclaw Medical University, ul. Marii Skłodowskiej-Curie 66, 50-369 Wrocław, Poland
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland ; Department of Chemistry, University of Opole, pl. Kopernika 11a, 45-040 Opole, Poland
| |
Collapse
|
7
|
Byzia A, Haeggström JZ, Salvesen GS, Drag M. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids. Amino Acids 2014; 46:1313-20. [PMID: 24573245 PMCID: PMC3984412 DOI: 10.1007/s00726-014-1694-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/06/2014] [Indexed: 12/01/2022]
Abstract
Leukotriene A4 hydrolase (LTA4H––EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (kcat/Km values). Among them, the benzyl ester of aspartic acid exhibited a kcat/Km value that was more than two orders of magnitude higher (1.75 × 105 M−1 s−1) as compared to l-Arg (1.5 × 103 M−1 s−1). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.
Collapse
Affiliation(s)
- Anna Byzia
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | | | | | | |
Collapse
|
8
|
The interrelationship between leukotriene B4 and leukotriene-A4-hydrolase in collagen/adjuvant-induced arthritis in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:730421. [PMID: 24701582 PMCID: PMC3950596 DOI: 10.1155/2014/730421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/29/2022]
Abstract
This study aimed to check the involvement of lipid mediator leukotriene (LT) B4 and the activity of LTA4 hydrolase (LTA4H) in the development of arthritis induced in rats by collagen and adjuvant (CIA). High-performance liquid chromatography (HPLC) and enzyme immunoassay (EIA) were used for measurements of LTB4 and LTA4H in plasma, synovial fluid (SF), soluble (SO), and solubilized membrane-bound fraction (MB) from synovial tissue (ST) and peripheral blood mononuclear cells (PBMCs) of CIA-arthritic and CIA-resistant. EIA process is simple, clean, and rapid and offered advantages over HPLC, showing that in SF and MB-PBMCs of CIA-arthritic and CIA-resistant, and in MB-ST of CIA-resistant, LTB4 and LTA4H were altered in parallel and were positively related. In the plasma and SO-ST and SO-PBMCs of CIA-arthritic and CIA-resistant, and in MB-ST of CIA-arthritic, this pattern was not found. The primordial role played by LTA4H in the biosynthesis of LTB4 was confirmed together with the existence of alternative steps that regulate LTB4 without participation of LTA4H. The involvement of compartmentalized and coupled changes of LTB4 and LTA4H in the resistance and development of arthritis in CIA model was demonstrated for the first time.
Collapse
|
9
|
Masuda Y, Kugimiya SI, Kawachi Y, Kato K. Interparticle mesoporous silica as an effective support for enzyme immobilisation. RSC Adv 2014. [DOI: 10.1039/c3ra46122j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|