1
|
Ye Z, Li Y, Zhao Y, Zhang J, Zhu T, Xu F, Li F. Effect of Exogenous Electric Stimulation on the Cardiac Tissue Function In Situ Monitored by Scanning Electrochemical Microscopy. Anal Chem 2023; 95:4634-4643. [PMID: 36787441 DOI: 10.1021/acs.analchem.2c04758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cardiac tissue is sensitive to and can be easily damaged by exogenous electric stimulation. However, due to the thermal-electric coeffect and the limitation of in situ and quantitative information on the cardiac tissue function under electric stimulation, the detailed effect and the underlying mechanism of exogenous electric stimulation on the cardiac tissue remain elusive. To address this, in this work, we first constructed an in vitro cardiac tissue model and established a thermal-electric coupled theoretical model for simulating the electric field and temperature distributions around the cardiac tissue, from which we selected the electric field strengths (1.19, 2.37, and 3.39 kV cm-1) and electrical energies (0.001, 0.005, and 0.011 J) for electric stimulations without inducing a thermal effect. Then, we applied electric field stimulations on the cardiac tissue using these parameters and scanning electrochemical microscopy (SECM) to in situ and quantitatively monitor the dynamic changes in the key parameters of the cardiac tissue function, including respiratory activity, membrane permeability, and contraction frequency, after electric field stimulations. The SECM results showed that the oxygen consumption, cell membrane permeability coefficient, and contraction frequency of the cardiac tissue were strongly dependent on electrical energy, especially when the electrical energy was higher than 0.001 J. Our work, for the first time, achieves the in situ and quantitative monitoring of the cardiac tissue function under electric stimulation using SECM, which would provide important references for designing an electric stimulation regime for cardiac tissue engineering and clinical application of electrotherapy.
Collapse
Affiliation(s)
- Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Cardiovasology, Xidian Group Hospital, Xi'an 710077, Shaanxi, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
2
|
Effect of Extracellular Matrix Stiffness on Candesartan Efficacy in Anti-Fibrosis and Antioxidation. Antioxidants (Basel) 2023; 12:antiox12030679. [PMID: 36978927 PMCID: PMC10044920 DOI: 10.3390/antiox12030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial fibrosis progression and imbalanced redox state are closely associated with increased extracellular matrix (ECM) stiffness. Candesartan (CAN), an angiotensin II (Ang II) receptor inhibitor, has shown promising anti-fibrosis and antioxidant efficacy in previous cardiovascular disease studies. However, the effect of ECM stiffness on CAN efficacy remains elusive. In this study, we constructed rat models with three different degrees of myocardial fibrosis and treated them with CAN, and then characterized the stiffness, cardiac function, and NADPH oxidase-2 (NOX2) expression of the myocardial tissues. Based on the obtained stiffness of myocardial tissues, we used polyacrylamide (PA) gels with three different stiffness to mimic the ECM stiffness of cardiac fibroblasts (CFs) at the early, middle, and late stages of myocardial fibrosis as the cell culture substrates and then constructed CFs mechanical microenvironment models. We studied the effects of PA gel stiffness on the migration, proliferation, and activation of CFs without and with CAN treatment, and characterized the reactive oxygen species (ROS) and glutathione (GSH) levels of CFs using fluorometry and scanning electrochemical microscopy (SECM). We found that CAN has the best amelioration efficacy in the cardiac function and NOX2 levels in rats with medium-stiffness myocardial tissue, and the most obvious anti-fibrosis and antioxidant efficacy in CFs on the medium-stiffness PA gels. Our work proves the effect of ECM stiffness on CAN efficacy in myocardial anti-fibrosis and antioxidants for the first time, and the results demonstrate that the effect of ECM stiffness on drug efficacy should also be considered in the treatment of cardiovascular diseases.
Collapse
|
3
|
Li Y, Ye Z, Zhang J, Zhao Y, Zhu T, Song J, Xu F, Li F. In Situ and Quantitative Monitoring of Cardiac Tissues Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2022; 94:10515-10523. [PMID: 35822575 DOI: 10.1021/acs.analchem.2c01919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro cardiac tissue model holds great potential as a powerful platform for drug screening. Respiratory activity, contraction frequency, and extracellular H2O2 levels are the three key parameters for determining the physiological functions of cardiac tissues, which are technically challenging to be monitored in an in situ and quantitative manner. Herein, we constructed an in vitro cardiac tissue model on polyacrylamide gels and applied a pulsatile electrical field to promote the maturation of the cardiac tissue. Then, we built a scanning electrochemical microscopy (SECM) platform with programmable pulse potentials to in situ characterize the dynamic changes in the respiratory activity, contraction frequency, and extracellular H2O2 level of cardiac tissues under both normal physiological and drug (isoproterenol and propranolol) treatment conditions using oxygen, ferrocenecarboxylic acid (FcCOOH), and H2O2 as the corresponding redox mediators. The SECM results showed that isoproterenol treatment induced enhanced oxygen consumption, accelerated contractile frequency, and increased released H2O2 level, while propranolol treatment induced dynamically decreased oxygen consumption and contractile frequency and no obvious change in H2O2 levels, suggesting the effects of activation and inhibition of β-adrenoceptor on the metabolic and electrophysiological activities of cardiac tissues. Our work realizes the in situ and quantitative monitoring of respiratory activity, contraction frequency, and secreted H2O2 level of living cardiac tissues using SECM for the first time. The programmable SECM methodology can also be used to real-time and quantitatively monitor electrochemical and electrophysiological parameters of cardiac tissues for future drug screening studies.
Collapse
Affiliation(s)
- Yabei Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tong Zhu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Cardiovasology, Xidian Group Hospital, Xi'an, Shaanxi Province 710077, P. R. China
| | - Jingjing Song
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Li Y, Morel A, Gallant D, Mauzeroll J. Ag + Interference from Ag/AgCl Wire Quasi-Reference Counter Electrode Inducing Corrosion Potential Shift in an Oil-Immersed Scanning Micropipette Contact Method Measurement. Anal Chem 2021; 93:9657-9662. [PMID: 34236831 DOI: 10.1021/acs.analchem.1c01045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative scanning micropipette contact method measurements are subject to the deleterious effects of reference electrode interference. The commonly used Ag/AgCl wire quasi-reference counter electrode in the miniaturized electrochemical cell of the scanning micropipette contact method was found to leak Ag+ into the electrolyte solution. The reduction of these Ag+ species at the working electrode surface generates a faradaic current, which significantly affects the low magnitude currents inherently measured in the scanning micropipette contact method. We demonstrate that, during the microscopic corrosion investigation of the AA7075-T73 alloy using the oil-immersed scanning micropipette contact method, the cathodic current was increased by the Ag+ reduction, resulting in positive shifts of corrosion potentials. The use of a leak-free Ag/AgCl electrode or an extended distance between the Ag/AgCl wire and micropipette tip droplet eliminated the Ag+ contamination, making it possible to measure accurate corrosion potentials during the oil-immersed scanning micropipette contact method measurements.
Collapse
Affiliation(s)
- Yuanjiao Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Alban Morel
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd. East, Saguenay, Quebec G7H 8C3, Canada
| | - Danick Gallant
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd. East, Saguenay, Quebec G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
5
|
Miyaoka A, Tsukamoto Y, Takagi D, Seo M, Miyagawa S, Akashi M. Noninvasive optical coherence tomography imaging of three-dimensional cardiac tissues derived from human induced pluripotent stem cells. J Tissue Eng Regen Med 2020; 14:1384-1393. [PMID: 32593199 DOI: 10.1002/term.3092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
Artificial three-dimensional (3D) tissues have the potential to be used in regenerative medicine or in vitro screening. In particular, the fabrication of 3-D cardiac tissues is greatly anticipated. However, hierarchical organization of 3-D tissues is still unknown. In regenerative medicine and drug discovery, noninvasive evaluation methods of 3-D tissues including inside of it play a key role. In this study, we report on noninvasive methods of analyzing bio-fabricated 3-D cardiac tissues using optical coherence tomography (OCT) and image analysis. Three-dimensional cardiac tissues were fabricated by coating of extracellular matrix nanofilms onto a cell surface using a layer-by-layer (LbL) technique. At first, we investigated the relationship between surface beating and its thickness to assess the value of internal analysis. The results showed that the surface beating was influenced by the thickness. Next, we tried to quantitatively evaluate the internal beating of 3-D cardiac tissues. We also confirmed the methods by changing the beating properties through the administration of isoproterenol. Our results demonstrated that the beating properties of 3-D cardiac tissues differed by depth. The results of this study suggest that information on the internal properties of 3-D cardiac tissue was necessary to understand how it functions. The combination of OCT and image analysis can be used to evaluate the internal beating properties, including changes in beating induced by a drug. It is suggested that OCT and image analysis have the potential to be used as noninvasive methods in regenerative medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Atsushi Miyaoka
- Biomedical Research Department, Healthcare Research & Development Center, Ricoh Institute of Future Technology, RICOH COMPANY, LTD., Kawasaki, Japan
| | - Yoshinari Tsukamoto
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Daisuke Takagi
- Biomedical Research Department, Healthcare Research & Development Center, Ricoh Institute of Future Technology, RICOH COMPANY, LTD., Kawasaki, Japan
| | - Manabu Seo
- Biomedical Research Department, Healthcare Research & Development Center, Ricoh Institute of Future Technology, RICOH COMPANY, LTD., Kawasaki, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Okumura S, Hirano Y, Maki Y, Komatsu Y. Analysis of time-course drug response in rat cardiomyocytes cultured on a pattern of islands. Analyst 2019; 143:4083-4089. [PMID: 30083681 DOI: 10.1039/c8an01033a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported the kinetics analysis of cardiomyocyte beating using scanning electrochemical microscopy (SECM). In this study, a stage-top incubator and a capillary micropipette (MP) for delivering drugs were assembled with an SECM instrument, and the responses of rat cardiomyocytes were analyzed under a culture environment after drug stimulation. When adenosine triphosphate (ATP) was delivered to synchronously beating cardiomyocytes, the beating acceleration effect of ATP was counteracted by the synchronously beating network in the culture dish. In contrast, cardiomyocytes cultured on a pattern of islands in a culture dish showed fluctuations in the duration of beating upon the addition of ATP. We also examined the effect of the cardiotoxic agent astemizole on cardiomyocytes and successfully detected motion fluctuations. Therefore, drug stimulation via MPs and beating measurement by SECM are effective routes for the evaluation of drug candidates through the analysis of time-course beating motion fluctuations of the cardiomyocytes.
Collapse
|
7
|
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy. Proc Math Phys Eng Sci 2018; 474:20180409. [PMID: 30839832 PMCID: PMC6237495 DOI: 10.1098/rspa.2018.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful and versatile technique for visualizing the local electrochemical activity of a surface as an ultramicroelectrode tip is moved towards or over a sample of interest using precise positioning systems. In comparison with other scanning probe techniques, SECM not only enables topographical surface mapping but also gathers chemical information with high spatial resolution. Considerable progress has been made in the analysis of biological samples, including living cells and immobilized biomacromolecules such as enzymes, antibodies and DNA fragments. Moreover, combinations of SECM with comple-mentary analytical tools broadened its applicability and facilitated multi-functional analysis with extended life science capabilities. The aim of this review is to present a brief topical overview on recent applications of biological SECM, with particular emphasis on important technical improvements of this surface imaging technique, recommended applications and future trends.
Collapse
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
8
|
Ino K, Kanno Y, Inoue KY, Suda A, Kunikata R, Matsudaira M, Shiku H, Matsue T. Electrochemical Motion Tracking of Microorganisms Using a Large‐Scale‐Integration‐Based Amperometric Device. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering Tohoku University 6-6-11-406 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Yusuke Kanno
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Atsushi Suda
- Japan Aviation Electronics Industry, Ltd. 1-1, Musashino 3-chome, Akishima-shi Tokyo 196-8555 Japan
| | - Ryota Kunikata
- Japan Aviation Electronics Industry, Ltd. 1-1, Musashino 3-chome, Akishima-shi Tokyo 196-8555 Japan
| | - Masahki Matsudaira
- Micro System Integration Center Tohoku University 519–1176 Aramaki-aza Aoba, Aoba-ku Sendai 980-0845 Japan)
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University 6-6-11-406 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies Tohoku University 6-6-11-604 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
- WPI-Advanced Institute for Materials Research Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan)
| |
Collapse
|
9
|
Ino K, Kanno Y, Inoue KY, Suda A, Kunikata R, Matsudaira M, Shiku H, Matsue T. Electrochemical Motion Tracking of Microorganisms Using a Large-Scale-Integration-Based Amperometric Device. Angew Chem Int Ed Engl 2017; 56:6818-6822. [PMID: 28471045 DOI: 10.1002/anie.201701541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/14/2017] [Indexed: 12/15/2022]
Abstract
Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 μm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6 ]4- and reduction of O2 .
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yusuke Kanno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Atsushi Suda
- Japan Aviation Electronics Industry, Ltd., 1-1, Musashino 3-chome, Akishima-shi, Tokyo, 196-8555, Japan
| | - Ryota Kunikata
- Japan Aviation Electronics Industry, Ltd., 1-1, Musashino 3-chome, Akishima-shi, Tokyo, 196-8555, Japan
| | - Masahki Matsudaira
- Micro System Integration Center, Tohoku University, 519-1176 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-0845, Japan)
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-406 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.,WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan)
| |
Collapse
|
10
|
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 2016; 116:13234-13278. [PMID: 27736057 DOI: 10.1021/acs.chemrev.6b00067] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Philippe Dauphin-Ducharme
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| |
Collapse
|
11
|
Hirano Y, Ikegami M, Kowata K, Komatsu Y. Bienzyme reactions on cross-linked DNA scaffolds for electrochemical analysis. Bioelectrochemistry 2016; 113:15-19. [PMID: 27611764 DOI: 10.1016/j.bioelechem.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Enzymes play an essential role in various detection technologies. We show here that interstrand cross-linked oligodeoxynucleotides (CL-ODNs) can provide stable scaffolds for efficiently coupling two types of enzymatic reactions on an electrode. Glucose can be electrochemically detected using glucose oxidase (GOx) and horseradish peroxidase (HRP). When both GOx and HRP were immobilized on an electrode surface by attachment at the termini of CL-ODNs, the current value was markedly increased compared with that obtained on a standard ODN scaffold. The relative orientation of the enzymes on the electrode strongly affected the current intensities. The CL-ODN also allowed GOx-HRP to form a complex on the tiny surface of a microelectrode, resulting in the imaging of local glucose distribution. These results suggest that CL-ODNs have potential utility in other sensing technologies.
Collapse
Affiliation(s)
- Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Masiki Ikegami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Keiko Kowata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Japan.
| |
Collapse
|
12
|
McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng Part C Methods 2016; 22:221-249. [PMID: 26650970 PMCID: PMC5029285 DOI: 10.1089/ten.tec.2015.0375] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs.
Collapse
Affiliation(s)
- Richard J. McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, Utah, United States
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Igaki Y, Mizutani F, Yasukawa T. Oxygen Consumption of Contractile C2C12 Myotubes Investigated by Scanning Electrochemical Microscopy. CHEM LETT 2015. [DOI: 10.1246/cl.150371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Igaki
- Graduate School of Material Science, University of Hyogo
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo
| | | |
Collapse
|