1
|
Wang F, Yao T, Yang W, Wu P, Liu Y, Yang B. Protocol to detect nucleotide-protein interaction in vitro using a non-radioactive competitive electrophoretic mobility shift assay. STAR Protoc 2022; 3:101730. [PMID: 36181685 PMCID: PMC9530670 DOI: 10.1016/j.xpro.2022.101730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/10/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023] Open
Abstract
Electrophoretic mobility shift assay (EMSA) is a classical and popular approach for DNA/RNA protein-binding affinity detection in vitro. This protocol describes a competitive EMSA assay using digoxigenin (DIG)-labeled probe, which solves the safety issues and limitations attributed to the short lifespan of the 32P-radiolabeled DNA probe. We detail steps for DNA probe preparation, protein-DNA mixture coincubation, EMSA, and competitive EMSA process. We optimize the standard DIG-ddUTP-labeling EMSA protocol to high sensitivity with reproducible results. For complete details on the use and execution of this protocol, please refer to Feng et al. (2022).
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| |
Collapse
|
2
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
3
|
Yodsurang V, Tang Y, Takahashi Y, Tanikawa C, Kamatani Y, Takahashi A, Momozawa Y, Fuse N, Sugawara J, Shimizu A, Fukushima A, Hishida A, Furusyo N, Naito M, Wakai K, Yamaji T, Sawada N, Iwasaki M, Tsugane S, Hirata M, Murakami Y, Kubo M, Matsuda K. Genome-wide association study (GWAS) of ovarian cancer in Japanese predicted regulatory variants in 22q13.1. PLoS One 2018; 13:e0209096. [PMID: 30557369 PMCID: PMC6296504 DOI: 10.1371/journal.pone.0209096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified greater than 30 variants associated with ovarian cancer, but most of these variants were investigated in European populations. Here, we integrated GWAS and subsequent functional analyses to identify the genetic variants with potential regulatory effects. We conducted GWAS for ovarian cancer using 681 Japanese cases and 17,492 controls and found that rs137672 on 22q13.1 exhibited a strong association with a P-value of 1.05 × 10−7 and an odds ratio of 0.573 with a 95% confidence interval of 0.466–0.703. In addition, three previously reported SNPs, i.e., rs10088218, rs9870207 and rs1400482, were validated in the Japanese population (P < 0.05) with the same risk allele as noted in previous studies. Functional studies including regulatory feature analysis and electrophoretic mobility shift assay (EMSA) revealed two regulatory SNPs in 22q13.1, rs2072872 and rs6509, that affect the binding affinity to some nuclear proteins in ovarian cancer cells. The plausible regulatory proteins whose motifs could be affected by the allele changes of these two SNPs were also proposed. Moreover, the protective G allele of rs6509 was associated with a decreased SYNGR1 expression level in normal ovarian tissues. Our findings elucidated the regulatory variants in 22q13.1 that are associated with ovarian cancer risk.
Collapse
Affiliation(s)
- Varalee Yodsurang
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yaqi Tang
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Pharmaceutical and Biological Sciences, University Claude Bernard Lyon 1, Lyon, France
| | - Yukie Takahashi
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Hematology, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Akimune Fukushima
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Slotta C, Schlüter T, Ruiz-Perera LM, Kadhim HM, Tertel T, Henkel E, Hübner W, Greiner JFW, Huser T, Kaltschmidt B, Kaltschmidt C. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle. PLoS One 2017; 12:e0182373. [PMID: 28767691 PMCID: PMC5540532 DOI: 10.1371/journal.pone.0182373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the fourth common cancer in women resulting worldwide in 266,000 deaths per year. Belonging to the carcinomas, new insights into cervical cancer biology may also have great implications for finding new treatment strategies for other kinds of epithelial cancers. Although the transcription factor NF-κB is known as a key player in tumor formation, the relevance of its particular subunits is still underestimated. Here, we applied CRISPR/Cas9n-mediated genome editing to successfully knockout the NF-κB subunit c-REL in HeLa Kyoto cells as a model system for cervical cancers. We successfully generated a homozygous deletion in the c-REL gene, which we validated using sequencing, qPCR, immunocytochemistry, western blot analysis, EMSA and analysis of off-target effects. On the functional level, we observed the deletion of c-REL to result in a significantly decreased cell proliferation in comparison to wildtype (wt) without affecting apoptosis. The impaired proliferative behavior of c-REL-/- cells was accompanied by a strongly decreased amount of the H2B protein as well as a significant delay in the prometaphase of mitosis compared to c-REL+/+ HeLa Kyoto cells. c-REL-/- cells further showed significantly decreased expression levels of c-REL target genes in comparison to wt. In accordance to our proliferation data, we observed the c-REL knockout to result in a significantly increased resistance against the chemotherapeutic agents 5-Fluoro-2'-deoxyuridine (5-FUDR) and cisplatin. In summary, our findings emphasize the importance of c-REL signaling in a cellular model of cervical cancer with direct clinical implications for the development of new treatment strategies.
Collapse
Affiliation(s)
- Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Schlüter
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | - Tobias Tertel
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Elena Henkel
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, Bielefeld, Germany
| | | | - Thomas Huser
- Biomolecular Photonics, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|