1
|
Werner C, Eimermacher S, Harasimowicz H, Fischer D, Pietsch M, Niefind K. A CK2α' mutant indicating why CK2α and CK2α', the isoforms of the catalytic subunit of human protein kinase CK2, deviate in affinity to CK2β. Biol Chem 2025:hsz-2024-0157. [PMID: 40223482 DOI: 10.1515/hsz-2024-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Protein kinase CK2 (casein kinase 2) mainly exists as heterotetrameric holoenzyme with two catalytic subunits (CK2α or CK2α') bound to a homodimer of non-catalytic subunits (CK2β). With CSNK2A1 and CSNK2A2, the human genome contains two paralogs encoding catalytic CK2 subunits. Both gene products, called CK2α and CK2α', strongly interact with CK2β. An earlier report that CK2α' has a lower CK2β affinity than CK2α is confirmed via isothermal titration calorimetry in this study. Furthermore, we show with a fluorescence-anisotropy assay that a CK2β-competitive peptide binds less strongly to CK2α' than to CK2α. The reason for the reduced affinity of CK2α' to CK2β and CK2β competitors is puzzling: both isoenzymes have identical amino acid compositions at their CK2β interfaces, but the β4β5 loop, a component of this interface, is conformationally less adaptable in CK2α' than in CK2α due to intramolecular constraints. To release these constraints, we constructed a CK2α' mutant that was equalized to CK2α at the backside of the β4β5 loop. Concerning thermostability, affinity to CK2β or CK2β competitors and 3D-structure next to the β4β5 loop, this CK2α' mutant is more similar to CK2α than to its own wild-type, suggesting a critical role of the β4β5 loop adaptability for CK2β affinity.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Sophia Eimermacher
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campusplatz 1, D-51379 Leverkusen, Germany
- Faculty of Medicine and University Hospital of Cologne, Center of Pharmacology, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany
| | - Hugo Harasimowicz
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Dietmar Fischer
- Faculty of Medicine and University Hospital of Cologne, Center of Pharmacology, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany
| | - Markus Pietsch
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campusplatz 1, D-51379 Leverkusen, Germany
- Faculty of Medicine and University Hospital of Cologne, Center of Pharmacology, University of Cologne, Gleueler Str. 24, D-50931 Cologne, Germany
| | - Karsten Niefind
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany
| |
Collapse
|
2
|
van Wier SP, Beekman AM. Peptide design to control protein-protein interactions. Chem Soc Rev 2025; 54:1684-1698. [PMID: 39817557 PMCID: PMC11736853 DOI: 10.1039/d4cs00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 01/18/2025]
Abstract
Targeting of protein-protein interactions has become of huge interest in every aspect of medicinal and biological sciences. The control of protein interactions selectively offers the opportunity to control biological processes while limiting off target effects. This interest has massively increased with the development of cryo-EM and protein structure prediction with tools such as RosettaFold and AlphaFold. When designing molecules to control protein interactions, either inhibition or stabilisation, a starting point is commonly peptide design. This tutorial review describes that process, highlighting the selection of an initial sequence with and without structural information. Subsequently, methods for how the sequence can be analysed for key residues and how this information can be used to optimise the ligand efficiency are highlighted. Finally a discussion on how peptides can be further modified to increase their affinity and cell permeability, improving their drug-like properties, is presented.
Collapse
Affiliation(s)
- Suzanne P van Wier
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Andrew M Beekman
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
3
|
Pepanian A, Sommerfeld P, Kasprzyk R, Kühl T, Binbay FA, Hauser C, Löser R, Wodtke R, Bednarczyk M, Chrominski M, Kowalska J, Jemielity J, Imhof D, Pietsch M. Fluorescence Anisotropy Assay with Guanine Nucleotides Provides Access to Functional Analysis of Gαi1 Proteins. Anal Chem 2022; 94:14410-14418. [PMID: 36206384 DOI: 10.1021/acs.analchem.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Paul Sommerfeld
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Christoph Hauser
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.,Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
4
|
Atkinson EL, Iegre J, D'Amore C, Brear P, Salvi M, Hyvönen M, Spring DR. Development of small cyclic peptides targeting the CK2α/β interface. Chem Commun (Camb) 2022; 58:4791-4794. [PMID: 35343996 PMCID: PMC9004346 DOI: 10.1039/d2cc00707j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022]
Abstract
In this work, an iterative cycle of enzymatic assays, X-ray crystallography, molecular modelling and cellular assays were used to develop a functionalisable chemical probe for the CK2α/β PPI. The lead peptide, P8C9, successfully binds to CK2α at the PPI site, is easily synthesisable and functionalisable, highly stable in serum and small enough to accommodate further optimisation.
Collapse
Affiliation(s)
- Eleanor L Atkinson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Jessica Iegre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1GA, Cambridge, UK.
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1GA, Cambridge, UK.
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
5
|
Brandt F, Ullrich M, Laube M, Kopka K, Bachmann M, Löser R, Pietzsch J, Pietzsch HJ, van den Hoff J, Wodtke R. "Clickable" Albumin Binders for Modulating the Tumor Uptake of Targeted Radiopharmaceuticals. J Med Chem 2021; 65:710-733. [PMID: 34939412 DOI: 10.1021/acs.jmedchem.1c01791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intentional binding of radioligands to albumin gains increasing attention in the context of radiopharmaceutical cancer therapy as it can lead to an enhanced radioactivity uptake into the tumor lesions and, thus, to a potentially improved therapeutic outcome. However, the influence of the radioligand's albumin-binding affinity on the time profile of tumor uptake has been only partly addressed so far. Based on the previously identified Nε-4-(4-iodophenyl)butanoyl-lysine scaffold, we designed "clickable" lysine-derived albumin binders (cLABs) and determined their dissociation constants toward albumin by novel assay methods. Structure-activity relationships were derived, and selected cLABs were applied for the modification of the somatostatin receptor subtype 2 ligand (Tyr3)octreotate. These novel conjugates were radiolabeled with copper-64 and subjected to a detailed in vitro and in vivo radiopharmacological characterization. Overall, the results of this study provide an incentive for further investigations of albumin binders for applications in endoradionuclide therapies.
Collapse
Affiliation(s)
- Florian Brandt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Martin Ullrich
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Jörg van den Hoff
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Technische Universität Dresden, Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
6
|
Iegre J, Atkinson EL, Brear PD, Cooper BM, Hyvönen M, Spring DR. Chemical probes targeting the kinase CK2: a journey outside the catalytic box. Org Biomol Chem 2021; 19:4380-4396. [PMID: 34037044 DOI: 10.1039/d1ob00257k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CK2 is a protein kinase that plays important roles in many physio-pathological cellular processes. As such, the development of chemical probes for CK2 has received increasing attention in the past decade with more than 40 lead compounds developed. In this review, we aim to provide the reader with a comprehensive overview of the chemical probes acting outside the highly-conserved ATP-site developed to date. Such probes belong to different classes of molecules spanning from small molecules to peptides, act with a range of mechanisms of action and some of them present themselves as promising tools to investigate the biology of CK2 and therefore develop therapeutics for many disease areas including cancer and COVID-19.
Collapse
Affiliation(s)
- Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Eleanor L Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Bethany M Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
7
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
8
|
Lindenblatt D, Nickelsen A, Applegate VM, Jose J, Niefind K. Structural and Mechanistic Basis of the Inhibitory Potency of Selected 2-Aminothiazole Compounds on Protein Kinase CK2. J Med Chem 2020; 63:7766-7772. [DOI: 10.1021/acs.jmedchem.0c00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Violetta M. Applegate
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| |
Collapse
|
9
|
Pizzi A, Pigliacelli C, Bergamaschi G, Gori A, Metrangolo P. Biomimetic engineering of the molecular recognition and self-assembly of peptides and proteins via halogenation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Pietsch M, Viht K, Schnitzler A, Ekambaram R, Steinkrüger M, Enkvist E, Nienberg C, Nickelsen A, Lauwers M, Jose J, Uri A, Niefind K. Unexpected CK2β-antagonistic functionality of bisubstrate inhibitors targeting protein kinase CK2. Bioorg Chem 2020; 96:103608. [PMID: 32058103 DOI: 10.1016/j.bioorg.2020.103608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2β), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2β interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2β interaction. A structural inspection revealed that ARC-3140, unlike CK2β antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2β interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2β2 holoenzyme.
Collapse
Affiliation(s)
- Markus Pietsch
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Ramesh Ekambaram
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Michaela Steinkrüger
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Christian Nienberg
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Miriam Lauwers
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany.
| |
Collapse
|
11
|
Lindenblatt D, Horn M, Götz C, Niefind K, Neundorf I, Pietsch M. Design of CK2β-Mimicking Peptides as Tools To Study the CK2α/CK2β Interaction in Cancer Cells. ChemMedChem 2019; 14:833-841. [PMID: 30786177 DOI: 10.1002/cmdc.201800786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/07/2022]
Abstract
The ubiquitously expressed Ser/Thr kinase CK2 is a key regulator in a variety of key processes in normal and malignant cells. Due to its distinctive anti-apoptotic and tumor-driving properties, elevated levels of CK2 have frequently been found in tumors of different origin. In recent years, development of CK2 inhibitors has largely been focused on ATP-competitive compounds; however, targeting the CK2α/CK2β interface has emerged as a further concept that might avoid selectivity issues. To address the CK2 subunit interaction site, we have synthesized halogenated CK2β-mimicking cyclic peptides modified with the cell-penetrating peptide sC18 to mediate cellular uptake. We investigated the binding of the resulting chimeric peptides to recombinant human CK2α using a recently developed fluorescence anisotropy assay. The iodinated peptide sC18-I-Pc was identified as a potent CK2α ligand (Ki =0.622 μm). It was internalized in cells to a high extent and exhibited significant cytotoxicity toward cancerous HeLa cells (IC50 =37 μm) in contrast to non-cancerous HEK-293 cells. The attractive features and functionalities of sC18-I-Pc offer the opportunity for further improvement.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Mareike Horn
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., Building 44, 66421, Homburg, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, 50931, Cologne, Germany
| |
Collapse
|
12
|
Krüger DM, Glas A, Bier D, Pospiech N, Wallraven K, Dietrich L, Ottmann C, Koch O, Hennig S, Grossmann TN. Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions. J Med Chem 2017; 60:8982-8988. [PMID: 29028171 PMCID: PMC5682607 DOI: 10.1021/acs.jmedchem.7b01221] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Macrocyclic
peptides can interfere with challenging biomolecular
targets including protein–protein interactions. Whereas there
are various approaches that facilitate the identification of peptide-derived
ligands, their evolution into higher affinity binders remains a major
hurdle. We report a virtual screen based on molecular docking that
allows the affinity maturation of macrocyclic peptides taking non-natural
amino acids into consideration. These macrocycles bear large and flexible
substituents that usually complicate the use of docking approaches.
A virtual library containing more than 1400 structures was screened
against the target focusing on docking poses with the core structure
resembling a known bioactive conformation. Based on this screen, a
macrocyclic peptide 22 involving two non-natural amino
acids was evolved showing increased target affinity and biological
activity. Predicted binding modes were verified by X-ray crystallography.
The presented workflow allows the screening of large macrocyclic peptides
with diverse modifications thereby expanding the accessible chemical
space and reducing synthetic efforts.
Collapse
Affiliation(s)
- Dennis M Krüger
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - David Bier
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Department of Chemistry, University of Duisburg-Essen , Universitätstr. 7, 45141 Essen, Germany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Kerstin Wallraven
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Laura Dietrich
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen , Universitätstr. 7, 45141 Essen, Germany.,Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel) 2017; 10:ph10010026. [PMID: 28230762 PMCID: PMC5374430 DOI: 10.3390/ph10010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Collapse
|
14
|
Seetoh WG, Abell C. Disrupting the Constitutive, Homodimeric Protein-Protein Interface in CK2β Using a Biophysical Fragment-Based Approach. J Am Chem Soc 2016; 138:14303-14311. [PMID: 27726344 PMCID: PMC5257173 DOI: 10.1021/jacs.6b07440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Identifying small molecules that
induce the disruption of constitutive
protein–protein interfaces is a challenging objective. Here,
a targeted biophysical screening cascade was employed to specifically
identify small molecules that could disrupt the constitutive, homodimeric
protein–protein interface within CK2β. This approach
could potentially be applied to achieve subunit disassembly of other
homo-oligomeric proteins as a means of modulating protein function.
Collapse
Affiliation(s)
- Wei-Guang Seetoh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Seetoh WG, Chan DSH, Matak-Vinković D, Abell C. Mass Spectrometry Reveals Protein Kinase CK2 High-Order Oligomerization via the Circular and Linear Assembly. ACS Chem Biol 2016; 11:1511-7. [PMID: 26999075 DOI: 10.1021/acschembio.6b00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CK2 is an intrinsically active protein kinase that is crucial for cellular viability. However, conventional kinase regulatory mechanisms do not apply to CK2, and its mode of regulation remains elusive. Interestingly, CK2 is known to undergo reversible ionic-strength-dependent oligomerization. Furthermore, a regulatory mechanism based on autoinhibitory oligomerization has been postulated on the basis of the observation of circular trimeric oligomers and linear CK2 assemblies in various crystal structures. Here, we employ native mass spectrometry to monitor the assembly of oligomeric CK2 species in an ionic-strength-dependent manner. A subsequent combination of ion mobility spectrometry-mass spectrometry and hydrogen-deuterium exchange mass spectrometry techniques was used to analyze the conformation of CK2 oligomers. Our findings support ionic-strength-dependent CK2 oligomerization, demonstrate the transient nature of the α/β interaction, and show that CK2 oligomerization proceeds via both the circular and linear assembly.
Collapse
Affiliation(s)
- Wei-Guang Seetoh
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge, CB2 1EW, United Kingdom
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge, CB2 1EW, United Kingdom
| | - Dijana Matak-Vinković
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge, CB2 1EW, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield
Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Predicting CK2 beta-dependent substrates using linear patterns. Biochem Biophys Rep 2015; 4:20-27. [PMID: 29124183 PMCID: PMC5668876 DOI: 10.1016/j.bbrep.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase deregulated in cancer and other pathologies, responsible for about the 20% of the human phosphoproteome. The holoenzyme is a complex composed of two catalytic (α or α´) and two regulatory (β) subunits, with individual subunits also coexisting in the cell. In the holoenzyme, CK2β is a substrate-dependent modulator of kinase activity. Therefore, a comprehensive characterization of CK2 cellular function should firstly address which substrates are phosphorylated exclusively when CK2β is present (class-III or beta-dependent substrates). However, current experimental constrains limit this classification to a few substrates. Here, we took advantage of motif-based prediction and designed four linear patterns for predicting class-III behavior in sets of experimentally determined CK2 substrates. Integrating high-throughput substrate prediction, functional classification and network analysis, our results suggest that beta-dependent phosphorylation might exert particular regulatory roles in viral infection and biological processes/pathways like apoptosis, DNA repair and RNA metabolism. It also pointed, that human beta-dependent substrates are mainly nuclear, a few of them shuttling between nuclear and cytoplasmic compartments. The designed linear patterns assist CK2 beta-dependent substrates prediction. A high-throughput prediction of CK2 beta-dependent substrates was performed in several organisms including human, mouse and rat. The functional classification indicated a role of CK2 beta-dependent regulation in viral infection, apoptosis, DNA repair and RNA metabolism. The functional classification indicated that human CK2 beta-dependent substrates are mainly nuclear with a number of them also found in cytoplasm.
Collapse
|
17
|
Winiewska M, Kucińska K, Makowska M, Poznański J, Shugar D. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1708-17. [PMID: 25891901 DOI: 10.1016/j.bbapap.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Katarzyna Kucińska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Małgorzata Makowska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
18
|
Zhao H, Piszczek G, Schuck P. SEDPHAT--a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 2015; 76:137-148. [PMID: 25477226 PMCID: PMC4380758 DOI: 10.1016/j.ymeth.2014.11.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/02/2023] Open
Abstract
Isothermal titration calorimetry experiments can provide significantly more detailed information about molecular interactions when combined in global analysis. For example, global analysis can improve the precision of binding affinity and enthalpy, and of possible linkage parameters, even for simple bimolecular interactions, and greatly facilitate the study of multi-site and multi-component systems with competition or cooperativity. A pre-requisite for global analysis is the departure from the traditional binding model, including an 'n'-value describing unphysical, non-integral numbers of sites. Instead, concentration correction factors can be introduced to account for either errors in the concentration determination or for the presence of inactive fractions of material. SEDPHAT is a computer program that embeds these ideas and provides a graphical user interface for the seamless combination of biophysical experiments to be globally modeled with a large number of different binding models. It offers statistical tools for the rigorous determination of parameter errors, correlations, as well as advanced statistical functions for global ITC (gITC) and global multi-method analysis (GMMA). SEDPHAT will also take full advantage of error bars of individual titration data points determined with the unbiased integration software NITPIC. The present communication reviews principles and strategies of global analysis for ITC and its extension to GMMA in SEDPHAT. We will also introduce a new graphical tool for aiding experimental design by surveying the concentration space and generating simulated data sets, which can be subsequently statistically examined for their information content. This procedure can replace the 'c'-value as an experimental design parameter, which ceases to be helpful for multi-site systems and in the context of gITC.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|