1
|
Li J, Halitschke R, Li D, Paetz C, Su H, Heiling S, Xu S, Baldwin IT. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science 2021; 371:255-260. [PMID: 33446550 DOI: 10.1126/science.abe4713] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2023]
Abstract
Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Haichao Su
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48161 Münster, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
2
|
Corbacho J, Inês C, Paredes MA, Labrador J, Cordeiro AM, Gallardo M, Gomez-Jimenez MC. Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:383-392. [PMID: 30390495 DOI: 10.1016/j.jplph.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Sphingolipids are abundant membrane components and signalling molecules in various aspects of plant development. However, the role of sphingolipids in early fleshy-fruit growth has rarely been investigated. In this study, we first investigated the temporal changes in sphingolipid long-chain base (LCB) content, composition, and gene expression that occurred during flower opening and early fruit development in olive (Olea europaea L. cv Picual). Moreover, the interaction between sphingolipid and the plant hormone, brassinosteroid (BR), during the early fruit development was also explored. For this, BR levels were manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz) and their effects on early fruit development, sphingolipid LCB content, and gene expression were examined in olive fruit at 14 days post-anthesis (DPA). We here show that sphingolipid with C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation are quantitatively the most important sphingolipids in olive reproductive organs. In this work, the total LCB amount significantly decreased at the anthesis stage, but olive sphingosine-1-phosphate lyase (OeSPL) gene was expressed exclusively in flower and upregulated during the anthesis, revealing an association with the d18:1(8E) accumulation. However, the LCB content increased in parallel with the upregulation of the expression of genes for key sphingolipid biosynthetic and LCB modification enzymes during early fruit development in olive. Likewise, we found that EBR exogenously applied to olive trees significantly stimulated the fruit growth rate whereas Brz inhibited fruit growth rate after 7 and 14 days of treatment. In addition, this inhibitory effect could be counteracted by the application of EBR. The promotion of early fruit growth was accompanied by the down-regulation of sphingolipid LCB content and gene expression in olive fruit, whereas Brz application raised levels of sphingolipid LCB content and gene expression in olive fruit after 7 and 14 days of treatment. Thus, our data indicate that endogenous sphingolipid LCB and gene-expression levels are intricately controlled during early fruit development and also suggest a possible link between BR, the sphingolipid content/gene expression, and early fruit development in olive.
Collapse
Affiliation(s)
- Jorge Corbacho
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Carla Inês
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Antonio M Cordeiro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS Biotecnologia e Recursos Genéticos, Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
3
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
4
|
Mallela SK, Almeida R, Ejsing CS, Conzelmann A. Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae. PLoS One 2016; 11:e0145831. [PMID: 26752183 PMCID: PMC4713442 DOI: 10.1371/journal.pone.0145831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1∆ ypc1∆ ydc1∆ ypr114w∆ yjr116w∆ mutant still contains ceramides and complex sphingolipids. Yjr116w∆ exhibit an oxygen-dependent hypersensitivity to Cu2+ due to an increased mitochondrial production of reactive oxygen species (ROS) and a mitochondrially orchestrated programmed cell death in presence of copper, but also a general copper hypersensitivity that cannot be counteracted by the antioxidant N-acetyl-cysteine (NAC). Myriocin efficiently represses the synthesis of sphingoid bases of ypr114w∆, but not its growth. Both yjr116w∆ and ypr114w∆ have fragmented vacuoles and produce less ROS than wild type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant.
Collapse
Affiliation(s)
- Shamroop K. Mallela
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Reinaldo Almeida
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Andreas Conzelmann
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem J 2015; 473:593-603. [PMID: 26635357 DOI: 10.1042/bj20150824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism.
Collapse
|
6
|
Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:188-201. [PMID: 26313010 PMCID: PMC4765501 DOI: 10.1111/tpj.13000] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 05/03/2023]
Abstract
Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.
Collapse
Affiliation(s)
- Joseph Msanne
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- School of Natural Resources, 807 Hardin Hall, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kyle D. Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Amanda M. Bradley
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth S. Mays
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Janet M. Paper
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| |
Collapse
|
7
|
Chen PW, Fonseca LL, Hannun YA, Voit EO. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast. PLoS Comput Biol 2015; 11:e1004373. [PMID: 26241868 PMCID: PMC4524633 DOI: 10.1371/journal.pcbi.1004373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.
Collapse
Affiliation(s)
- Po-Wei Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Luis L. Fonseca
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yusuf A. Hannun
- The Cancer Center at Stony Brook Medicine, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Eberhard O. Voit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|