1
|
Somnet K, Wanram S, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA, Amatatongchai M. Ultrasensitive and selective impedance paper-based analytical device through Dual-C imprinted sensor for determination of carcinoembryonic antigen and C-reactive protein. Mikrochim Acta 2025; 192:112. [PMID: 39881093 DOI: 10.1007/s00604-025-06975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT). They combine a core comprising of silica nanospheres decorated with silver nanoparticles (SiO2@AgNPs) coated with molecularly imprinted polymers (MIPs) for CEA and CRP as shells. CEA-MIP and CRP-MIP were successful coated on the core via self-assembly of N-acetyl-L-cysteine (NAC) followed by building up recognition sites in iminodiacetic acid/ethylene glycol dimethacrylate (IDA/EGDMA) polymer. We constructed a selective and compact imprinted PAD based on a SiO2@AgNPs@MIP-CEA- and SiO2@AgNPs@MIP-CRP-modified graphene electrode, a so-called Dual-C sensor. The resulting twin voltammetric cells to detect CEA and CRP use foldable hydrophobic back-up sheets acting as reservoirs. The advantages of this approach include straightforward manufacturing with highly reproducibility, quick assembly, and good physical durability. The Dual-C sensor revealed excellent linear dynamic ranges of 0.0001 to 10 ng mL-1 for both CEA and CRP, which covers on the concentration ranges of clinical interest for both analytes. Furthermore, the system shows high accuracy and precision, with no evidence of interference from serum samples.
Collapse
Affiliation(s)
- Kanpitcha Somnet
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Surasak Wanram
- Biomedical Science Research Unit, College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Duangjai Nacapricha
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, 10400, Thailand
| | - Peter A Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Sang L, Liang H, Zhao B, Shi R, Jian A, Sang S. A Silicon-Based ROTE Sensor for High-Q and Label-Free Carcinoembryonic Antigen Detection. MICROMACHINES 2024; 15:580. [PMID: 38793154 PMCID: PMC11123482 DOI: 10.3390/mi15050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This paper presents a biosensor based on the resonant optical tunneling effect (ROTE) for detecting a carcinoembryonic antigen (CEA). In this design, sensing is accomplished through the interaction of the evanescent wave with the CEA immobilized on the sensor's surface. When CEA binds to the anti-CEA, it alters the effective refractive index (RI) on the sensor's surface, leading to shifts in wavelength. This shift can be identified through the cascade coupling of the FP cavity and ROTE cavity in the same mode. Experimental results further show that the shift in resonance wavelength increases with the concentration of CEA. The biosensor responded linearly to CEA concentrations ranging from 1 to 5 ng/mL with a limit of detection (LOD) of 0.5 ng/mL and a total Q factor of 9500. This research introduces a new avenue for identifying biomolecules and cancer biomarkers, which are crucial for early cancer detection.
Collapse
Affiliation(s)
- Luxiao Sang
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Haojie Liang
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Biao Zhao
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Runze Shi
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Aoqun Jian
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro-Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
3
|
Fu W, Yue Y, Song Y, Zhang S, Shi J, Zhao R, Wang Q, Zhang R. Comparable analysis of six immunoassays for carcinoembryonic antigen detection. Heliyon 2024; 10:e25158. [PMID: 38322892 PMCID: PMC10845681 DOI: 10.1016/j.heliyon.2024.e25158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Objective This study aimed to assess the current status of carcinoembryonic antigen (CEA) detection. We evaluated the correlation, consistency, and comparability of CEA results among six automated immunoassays, and combined with the results of CEA trueness verification of the Beijing Center for Clinical Laboratories (BCCL) for further analysis. Methods Abbott Architect i2000, Beckman DxI800, Roche Cobas E601, Diasorin Liaison XL, Maccura IS1200, and Autolumo A2000 were used to detect 40 individual serum CEA samples. Taking the optimal analytical quality specifications calculated from data on biological variation as the evaluation criterion. Passing-Bablok regression and Bland-Altman analysis were performed between each assay and all-assays median values to evaluate the correlation and relative difference. The concordance correlation coefficient (CCC) was used for consistency analysis. Additionally, the trueness verification program used samples at three concentration levels to assess the bias, coefficient of variation (CV), and total error (TE) between the average measured values and the target value. Results The Spearman's rank correlation coefficient (rs) was ≥0.996 and the CCC ranged between 0.9448 and 0.9990 for each assay vs. all-assays median. Considering the all-assays median value of each sample as a reference, there were proportional and systematic differences according to the Passing-bablok regression analysis. The relative difference of the four assays (Abbott Architect i2000, Autolumo A2000, Diasorin Liaison XL, and Maccura IS1200) met the optimal analytical quality specifications. On the other hand, Beckman DxI800 (13.2 %) and Roche Cobas E601 (-9.0 %) were only able to fulfill the desirable analytical quality specifications. The average pass rates for bias, CV, and TE of the trueness verification program were 80 %, 98 %, and 96 %, respectively. Conclusions The six automated immunoassays vs. all-assays median have a good correlation in CEA detection. However, there is a lack of comparability of CEA results. Further improvements are needed in harmonization among CEA detections.
Collapse
Affiliation(s)
- Wenxuan Fu
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yuhong Yue
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yichuan Song
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Shunli Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jie Shi
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qingtao Wang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Kiemen AL, Damanakis AI, Braxton AM, He J, Laheru D, Fishman EK, Chames P, Pérez CA, Wu PH, Wirtz D, Wood LD, Hruban RH. Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. MED 2023; 4:75-91. [PMID: 36773599 PMCID: PMC9922376 DOI: 10.1016/j.medj.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Team, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cristina Almagro Pérez
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
6
|
Highly Sensitive Love Mode Acoustic Wave Platform with SiO2 Wave-Guiding Layer and Gold Nanoparticles for Detection of Carcinoembryonic Antigens. BIOSENSORS 2022; 12:bios12070536. [PMID: 35884339 PMCID: PMC9313398 DOI: 10.3390/bios12070536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
A highly sensitive and precise Love wave mode surface acoustic wave (SAW) immunosensor based on an ST-cut 90°X quartz substrate and an SiO2 wave-guiding layer was developed to detect cancer-related biomarkers of carcinoembryonic antigens (CEAs). A delay line structure of the SAW device with a resonant frequency of 196 MHz was designed/fabricated, and its surface was functionalized through CEA antibody immobilization. The CEA antibodies were bound with gold nanoparticles and CEA antibodies to form a sandwich structure, which significantly amplified the mass loading effect and enhanced the maximum responses by 30 times. The center frequency of the Love wave immunosensor showed a linear response as a function of the CEA concentration in the range of 0.2–5 ng/mL. It showed a limit of detection of 0.2 ng/mL, and its coefficient of determination was 0.983. The sensor also showed minimal interference from nonspecific adsorptions, thus demonstrating its promise for point-of-care applications for cancer biomarkers.
Collapse
|
7
|
Ng SS, Lee HL, Pandian BR, Doong RA. Recent developments on nanomaterial-based optical biosensor as potential Point-of-Care Testing (PoCT) probe in carcinoembryonic antigen detection: A review. Chem Asian J 2022; 17:e202200287. [PMID: 35471591 DOI: 10.1002/asia.202200287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
For the past decades, several cancer biomarkers have been exploited for rapid and accurate prognosis or diagnosis purposes. In this review, the optical biosensor is targeted for carcinoembryonic antigen (CEA) detection. The CEA level is a prominent parameter currently used in clinical cases for the prognosis of cancer-related diseases. Many nanomaterial-based biosensors are invented as alternatives for the commonly used enzyme-linked immunosorbent assays (ELISA) immunoassay method in CEA detection as the traditional approach but they possess certain drawbacks such as tedious procedure, high technical demand, and costly. Nevertheless, the effort appears to be wasted as none of them are being actualised. Generally, the sensor function was carried out by converting bio-signals generated upon the interface of the receptor into light signals. These sensors were popular due to specific advantages such as sensitivity, being free from chemical and electromagnetic interferences, wide dynamic range, and being easy to be monitored. The features of PoC diagnostics are discussed and associated with the various applications of colorimetric-based and chemiluminescent-based biosensors. The roles of nanomaterials in each application were also summarised by comparing the modification, incubation period, lowest detection limit (LOD) and linear range of detection amount. The challenges and future perspectives were highlighted at the end of the review.
Collapse
Affiliation(s)
- Siew Suan Ng
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| | - Hooi Ling Lee
- Universiti Sains Malaysia, School of Chemical Sciences, School of Chemical Sciences,, Universiti Sains Malaysia,, 11800, USM, MALAYSIA
| | | | - Ruey-An Doong
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| |
Collapse
|
8
|
Liu M, Li L, Jin D, Liu Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1697. [PMID: 33470555 DOI: 10.1002/wnan.1697] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In spite of the successful use of monoclonal antibodies (mAbs) in clinic for tumor treatment, their applications are still hampered in therapeutic development due to limitations, such as tumor penetration and high cost of manufacture. Nanobody, a single domain antibody that holds the strong antigen targeting and binding capacity, has demonstrated various advantages relative to antibody. Nanobody is considered as a next-generation of antibody-derived tool in the antigen related recognition and modulation. A number of nanobodies have been developed and evaluated in different stages of clinical trials for cancer treatment. Here we summarized the current progress of nanobody in tumor diagnosis and therapeutics, particularly on the conjugation of nanobody with functional moieties. The nanobody conjugation of diagnostic agents, such as radionuclide and optical tracers, can achieve specific tumor imaging. The nanobody-drug conjugates can enhance the therapeutic efficacy of anti-tumor drugs and reduce the adverse effects. The decoration of nanobody on nanodrug delivery systems can further improve the drug targeting to specific tumors. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Wang J, Guo X, Liu R, Guo J, Zhang Y, Zhang W, Sang S. Detection of carcinoembryonic antigen using a magnetoelastic nano-biosensor amplified with DNA-templated silver nanoclusters. NANOTECHNOLOGY 2020; 31:015501. [PMID: 31530749 DOI: 10.1088/1361-6528/ab4506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we develop a magnetoelastic (ME) nano-biosensor based on the competitive strategy for the detection of a carcinoembryonic antigen (CEA). Specifically, the gold-coated ME material provided a platform and the thiolated single-stranded DNA (HS-DNA) containing a half-complementary sequence towards the CEA aptamer was modified on the surface via Au-S bonding. DNA-templated silver nanoclusters (DNA-AgNCs) containing another half-complementary sequence towards the aptamer were used to amplify the signals by about 2.1 times, compared to those obtained using just the aptamer. CEA aptamers as a bio-recognition element were employed to link HS-DNA and DNA-AgNCs through DNA hybridization. The CEA aptamer preferentially combined with CEA rather than hybridized with DNA. Due to the magnetostrictive nature of the ME materials, the resonant frequency of the nano-biosensor would increase along with the release of DNA-AgNCs and CEA aptamers. The modification process was demonstrated by UV-vis spectra, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscope (TEM) and an atomic force microscope (AFM). The nano-biosensor has a linear response to the logarithmic CEA concentrations ranging from 2 pg ml-1 to 6.25 ng ml-1, with a limit of detection (LOD) of 1 pg ml-1 and a sensitivity of 105.05 Hz/ng · ml-1. This study provides a low-cost, highly sensitive and wireless method for selective detection of CEA.
Collapse
Affiliation(s)
- Jingzhe Wang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang C, Wang Y, Zhang H, Deng H, Xiong X, Li C, Li W. Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets. Anal Chim Acta 2019; 1090:64-71. [DOI: 10.1016/j.aca.2019.09.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
|
11
|
Yang X, Fan Y, Wu Z, Liu C. A Silicon Nanowire Array Biosensor Fabricated by Complementary Metal Oxide Semiconductor Technique for Highly Sensitive and Selective Detection of Serum Carcinoembryonic Antigen. MICROMACHINES 2019; 10:E764. [PMID: 31717950 PMCID: PMC6915592 DOI: 10.3390/mi10110764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 11/18/2022]
Abstract
In this paper, we present a highly sensitive and selective detection of serum carcinoembryonic antigen (CEA) based on silicon nanowire (SiNW) array device. With the help of traditional microfabrication technology, low-cost and highly controllable SiNW array devices were fabricated. After a series of surface modification processes, SiNW array biosensors show rapid and reliable response to CEA; the detection limit of serum CEA was 10 fg/mL, the current signal is linear with the logarithm of serum CEA concentration in the range of 10 fg/mL to 100 pg/mL. In this work, SiNW array biosensors can obtain strong signal and high signal-to-noise ratio; these advantages can reduce the production cost of the SiNW-based system and promote the application of SiNWs in the field of tumor marker detection.
Collapse
Affiliation(s)
- Xun Yang
- School of Electronic and Information Engineering, Foshan University, Foshan 528000, China;
| | - Yun Fan
- School of Electronic and Information Engineering, Foshan University, Foshan 528000, China;
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chaoran Liu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
12
|
Zhang WX, Cao JT, Wang YL, Ma SH, Liu YM. Label-free Photoelectrochemical Aptasensor for the Determination of Carcinoembryonic Antigen Using a Cadmum Sulfide Quantum Dot Sensitized Titanium (IV) Oxide Nanotube Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1360900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wen-Xuan Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan, China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
13
|
Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2066-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017; 8:63-77. [PMID: 28451149 PMCID: PMC5304706 DOI: 10.1039/c6sc02403c] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| |
Collapse
|
15
|
Hasanzadeh M, Shadjou N, Lin Y, de la Guardia M. Nanomaterials for use in immunosensing of carcinoembryonic antigen (CEA): Recent advances. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Monakhova YB, Goryacheva IY. Chemometric analysis of luminescent quantum dots systems: Long way to go but first steps taken. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
18
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|