1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025; 313:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Dokki 12622, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria 21531, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Ren J, An Y, Yin S, Wang J, Yu Q, Li C, Zhan T. Air plasma assisted directional electrodeposition of Ag nanoparticles on carbon cloth for electrochemical detection of rutin. Mikrochim Acta 2025; 192:210. [PMID: 40050526 DOI: 10.1007/s00604-025-07068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/22/2025] [Indexed: 04/11/2025]
Abstract
The air plasma-induced defects and O-related groups are employed as anchoring sites for the directional electrochemical deposition of Ag nanoparticles (AgNPs) with even distribution and a narrow size range on carbon cloth (CC). The strategy of integrating the air plasma and AgNPs provides plentiful adsorption and catalytic sites, a large electroactive area, superhydrophilic interface, and a smooth charge and mass-transfer pathway. As a consequence, the fabricated self-supporting electrode of AgNPs@CC - P displays an excellent sensing performance toward rutin with a large linear concentration window (0.05 ~ 30 µM), a small LOD (4.2 nM, S/N = 3) and LOQ (32 nM, S/N = 10), as well as good stability and reproducibility. The fabricated sensor is successfully applied to the practical detection of rutin in tablets and beverages with good accuracy. The self-supporting sensor also shows potential for fabricating flexible and soft sensing devices for real-time monitoring.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yutong An
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiqi Yin
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qingxian Yu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chunfang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Kannouma RE, Kamal AH, Hammad MA, Mansour FR. Fabrication of Highly Fluorescent Nitrogen and Phosphorus Dual-Doped Carbon Dots for Selective Sensing of Rutin. LUMINESCENCE 2025; 40:e70089. [PMID: 39823174 DOI: 10.1002/bio.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH4)2HPO4 as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.8%). After being excited at λ = 360 nm, the produced NP-CDs displayed a maximum bluish fluorescence at λem of 420 nm. Rutin quenched the fluorescence of the produced NP-CDs based on the inner filter effect and static quenching processes. Along with the International Council of Harmonization (ICH) requirements, the developed spectrofluorometric method was validated. The linearity range was 0.50-35.00 μg/mL of rutin. The developed NP-CDs were successfully employed to determine rutin concentrations in marketed tablets. The developed method is quick, simple, consistent, sensitive, and selective, and it does not require expensive chemicals or specialized instruments. This study paves the path for future application of NP-CD in pharmaceutical analysis.
Collapse
Affiliation(s)
- Reham E Kannouma
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Chen Z, Zhang T, Zhang X, Cheng W, Chen L, Lu N. A catalytic amplification platform based on Fe 2O 3 nanoparticles decorated graphene nanocomposites for highly sensitive detection of rutin. NANOSCALE ADVANCES 2024:d4na00583j. [PMID: 39323628 PMCID: PMC11420904 DOI: 10.1039/d4na00583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Exploration of nanocomposites with exceptional catalytic activities is essential for harnessing the unique advantages of each constituent in the domains of pharmaceutical analysis and electrochemical sensing. In this regard, we illustrated the synthesis of iron oxide/N-doped reduced graphene oxide (Fe2O3/N-rGO) nanocomposites through a one-step thermal treatment of iron phthalocyanine (FePc), melamine, and graphene oxide for electrochemical sensing. The large specific surface area and good conductivity of N-rGO can efficiently capture rutin molecules and accelerate electron transport, thereby improving the electrochemical performance. Moreover, the Fe2O3 nanoparticles with distinct electronic characteristics significantly enhanced the detection sensitivity of the constructed electrochemical platform. Because of the outstanding electrical conductivity, an extensive surface area, and synergistic catalysis, Fe2O3/N-rGO was employed as an advanced electrode modifier to build an electrochemical sensing platform for rutin detection. Significantly, the manufactured sensor showed a broad detection range from 7 nM to 150 μM and a high sensitivity of 5632 μA mM-1. Furthermore, the fabricated sensor showed desirable results in terms of stability, selectivity, and practical application. This work presents a facile method to prepare Fe2O3/N-rGO and supplies a valuable example for building metal oxide/graphene nanocomposites for electrochemical analysis.
Collapse
Affiliation(s)
- Zhuzhen Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University Qingdao 266071 PR China
| | - Xue Zhang
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Wangxing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Linwei Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Nannan Lu
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| |
Collapse
|
5
|
Liu Y, Qu W, Liu Y, Feng Y, Ma H, Tuly JA. Assessment of cell wall degrading enzymes by molecular docking and dynamics simulations: Effects of novel infrared treatment. Int J Biol Macromol 2024; 258:128825. [PMID: 38114009 DOI: 10.1016/j.ijbiomac.2023.128825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Cell wall-degrading enzymes' activities under infrared treatment are vital for peeling; it is critical to elucidate the mechanisms of the novel infrared peeling in relation to its impact on cell wall-degrading enzymes. In this study, the activities, and gene expressions of eight degrading enzymes closely related to pectin, cellulose and hemicellulose were determined. The most influential enzyme was selected from them, and then the mechanism of its changes was revealed by molecular dynamics simulation and molecular docking. The results demonstrated that infrared had the most significant effect on β-glucosidase among the tested enzymes (increased activity and up-regulated gene expression of 195.65 % and 7.08, respectively). It is suggested infrared crucially promotes cell wall degradation by affecting β-glucosidase. After infrared treatment, β-glucosidase's structure moderately transformed to a more open one and became flexible, increasing the affinity between β-glucosidase and substrate (increasing 75 % H-bonds and shortening 15.89 % average length), thereby improving β-glucosidase's activity. It contributed to cell wall degradation. The conclusion is that the effect of infrared on the activity, gene expression and molecular structure of β-glucosidase causes damage to the peel, thus broadening the applicability of the new infrared dry-peeling technique, which has the potential to replace traditional wet-peeling methods.
Collapse
Affiliation(s)
- Ying Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yuhang Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
6
|
Xiong Y, Zhu S, Zhao H, Li J, Li Y, Gong T, Tao Y, Hu J, Wang H, Jiang X. An electrochemical sensor based on CS-MWCNT and AuNPs for the detection of mycophenolic acid in plasma. Anal Biochem 2023; 677:115265. [PMID: 37499894 DOI: 10.1016/j.ab.2023.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
For patients receiving organ transplants, monitoring the blood concentration of MPA can provide timely information on whether MPA has reached the effective therapeutic window to better function while reducing the incidence of rejection or adverse reactions. In this study, an electrochemical sensor for the detection of MPA was built using a nanocomposite made of CS-MWCNT and AuNPs. At the same time, the high performance liquid phase (HPLC) method for MPA was established and compared with this sensor. The surface morphology, structure, and roughness of the material on the electrode were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and atomic force microscopy (AFM). In addition, the electrochemical behavior of the modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The standard curve was obtained in blank plasma, not pure buffer solution. The peak current was linearly related to the MPA concentration in the linear range of 0.001-0.1 mM with a detection limit of 0.05 μM and good anti-interference ability. Moreover, the sensor was employed with success for the determination of MPA in rat plasma with good recovery. The electrochemical sensor presented here is eco-friendly, and sensitive, and offers a great possibility for practical applicability.
Collapse
Affiliation(s)
- Yan Xiong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shu Zhu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Department of Pharmacy, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China
| | - Yanting Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Gong
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yanru Tao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jiangling Hu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Hongmei Wang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Fu an Pharmaceutical Group Chongqing Lybon Pharm-Tech Co.,Ltd, Chongqing, 401121, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wang Y, Chen J, Wang C, Zhang L, Yang Y, Chen C, Xie Y, Zhao P, Fei J. An electrochemical sensor based on Ce-MOF-derived Ce-doped poly(3,4-ethylenedioxythiophene) composite for efficient determination of rutin in food. Talanta 2023; 263:124678. [PMID: 37247454 DOI: 10.1016/j.talanta.2023.124678] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/19/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
As a common antioxidant and nutritional fortifier in food chemistry, rutin has positive therapeutic effects against novel coronaviruses. Here, Ce-doped poly(3,4-ethylenedioxythiophene) (Ce-PEDOT) nanocomposites derived through cerium-based metal-organic framework (Ce-MOF) as a sacrificial template have been synthesized and successfully applied to electrochemical sensors. Due to the outstanding electrical conductivity of PEDOT and the high catalytic activity of Ce, the nanocomposites were used for the detection of rutin. The Ce-PEDOT/GCE sensor detects rutin over a linear range of 0.02-9 μM with the limit of detection of 14.7 nM (S/N = 3). Satisfactory results were obtained in the determination of rutin in natural food samples (buckwheat tea and orange). Moreover, the redox mechanism and electrochemical reaction sites of rutin were investigated by the CV curves of scan rate and density functional theory. This work is the first to demonstrate the combined PEDOT and Ce-MOF-derived materials as an electrochemical sensor to detect rutin, thus opening a new window for the application of the material in detection.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Li Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chao Chen
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
8
|
Davoodi-Rad K, Shokrollahi A, Shahdost-Fard F, Azadkish K. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. BIOSENSORS 2023; 13:374. [PMID: 36979586 PMCID: PMC10046739 DOI: 10.3390/bios13030374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Inspired by laccase activity, herein, Cu-guanosine nanorods (Cu-Guo NRs) have been synthesized for the first time through a simple procedure. The activity of the Cu-Guo NR as the laccase mimicking nanozyme has been examined in the colorimetric sensing of rutin (Rtn) by a novel and simple spectrophotometric method. The distinct changes in the absorbance signal intensity of Rtn and a distinguished red shift under the optimum condition based on pH and ionic strength values confirmed the formation of the oxidized form of Rtn (o-quinone) via laccase-like nanozyme activity of Cu-Guo NRs. A vivid and concentration-dependent color variation from green to dark yellow led to the visual detection of Rtn in a broad concentration range from 770 nM to 54.46 µM with a limit of detection (LOD) of 114 nM. The proposed methodology was successfully applied for the fast tracing of Rtn in the presence of certain common interfering species and various complex samples such as propolis dry extract, human biofluids, and dietary supplement tablets, with satisfactory precision. The sensitivity and selectivity of the developed sensor, which are bonuses in addition to rapid, on-site, cost-effective, and naked-eye determination of Rtn, hold great promise to provide technical support for routine analysis in the real world.
Collapse
Affiliation(s)
| | | | | | - Kamal Azadkish
- Chemistry Department, Yasouj University, Yasouj 75914-353, Iran (K.A.)
| |
Collapse
|
9
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Alsaiari M, Alruwais RS, Madkhali O, Rahman MM, Harraz FA. Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO 3 Nanocomposites by Differential Pulse Voltammetry. BIOSENSORS 2022; 12:bios12110976. [PMID: 36354485 PMCID: PMC9688669 DOI: 10.3390/bios12110976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/03/2023]
Abstract
Herein, an ultra-sonication technique followed by a photoreduction technique was implemented to prepare silver nanoparticle-decorated Chitosan/SrSnO3 nanocomposites (Ag-decorated Chitosan/SrSnO3 NCs), and they were successively used as electron-sensing substrates coated on a glassy carbon electrode (GCE) for the development of a 2,6-dinitrophenol (2,6-DNP) efficient electrochemical sensor. The synthesized NCs were characterized in terms of morphology, surface composition, and optical properties using FESEM, TEM, HRTEM, BET, XRD, XPS, FTIR, and UV-vis analysis. Ag-decorated Chitosan/SrSnO3 NC/GCE fabricated with the conducting binder (PEDOT:PSS) was found to analyze 2,6-DNP in a wide detection range (LDR) of 1.5~13.5 µM by applying the differential pulse voltammetry (DPV) approach. The 2,6-DNP sensor parameters, such as sensitivity (54.032 µA µM-1 cm-2), limit of detection (LOD; 0.18 ± 0.01 µM), limit of quantification (LOQ; 0.545 µM) reproducibility, and response time, were found excellent and good results. Additionally, various environmental samples were analyzed and obtained reliable analytical results. Thus, it is the simplest way to develop a sensor probe with newly developed nanocomposite materials for analyzing the carcinogenic contaminants from the environmental effluents by electrochemical approach for the safety of environmental and healthcare fields in a broad scale.
Collapse
Affiliation(s)
- M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M. M. Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia
| | - O. Madkhali
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdelaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| |
Collapse
|
10
|
Kaleeswarran P, Koventhan C, Chen SM, Arumugam A. Coherent design of indium doped copper bismuthate-encapsulated graphene nanocomposite for sensitive electrochemical detection of Rutin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Wang M, Yue L, Niazi S, Khan IM, Zhang Y, Wang Z. Synthesis and characterization of cinnamic acid conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride derivatives: A hybrid flocculant with antibacterial activity. Int J Biol Macromol 2022; 206:886-895. [PMID: 35306015 DOI: 10.1016/j.ijbiomac.2022.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
The modified natural biopolymers, recognized as environmentally friendly flocculants, are gaining tremendous attention in the field of water treatment. In this study, a novel hybrid flocculant with antibacterial activity, cinnamic acid (CA) conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC) derivative (HTCC-CA), was prepared via quaternary ammonium and amide reactions. The characterization, flocculation, and antibacterial activities were carried out to access the structural properties and potential application. The results of UV-vis, FT-TR, and 1H NMR confirmed the successful synthesis of HTCC-CA1-3 derivatives. XRD and TGA revealed the lower crystallinity and thermal stability of HTCC-CA1-3 derivatives than chitosan (CS). Bacterial flocculation and antibacterial tests indicated the excellent flocculation effect of HTCC-CA1-3 derivatives and showed high antibacterial activity for Escherichia coli suspension. Moreover, the mechanism of action of the derivatives was investigated via zeta potential measurements and scanning electron microscope, which can be summed up as the effective interaction between charges. The results proved that HTCC-CA derivatives are promising agents for wastewater treatment.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
12
|
Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
En-Nakra F, Uzun D, Hasdemir E. Voltammetric determination of rutin in fruit juice samples using a 2 mercaptobenzothiazole coated pencil graphite electrode. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
A novel multicomponent TMDC, MoS2–WS2–CoSx, as an effective electrocatalyst for simultaneous detection ultra-levels of prednisolone and rutin in human body fluids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
İncebay H, Saylakci R. Voltammetric Determination of Neotame by Using Chitosan/Nickelnanoparticles/Multi Walled Carbon Nanotubes Biocomposite as a Modifier. ELECTROANAL 2021. [DOI: 10.1002/elan.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hilal İncebay
- Nevsehir Hacı Bektas Veli University Faculty of Arts and Sciences Department of Molecular Biology and Genetics Nevsehir Turkey
| | - Rumeysa Saylakci
- Nevsehir Hacı Bektas Veli University Faculty of Arts and Sciences Department of Molecular Biology and Genetics Nevsehir Turkey
| |
Collapse
|
16
|
Annu, Raja AN. Recent development in chitosan-based electrochemical sensors and its sensing application. Int J Biol Macromol 2020; 164:4231-4244. [DOI: 10.1016/j.ijbiomac.2020.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
|
17
|
In-situ and controllable synthesis of graphene-gold nanoparticles/molecularly imprinted polymers composite modified electrode for sensitive and selective rutin detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yu L, Zhang S, Xu H, Wang L, Zhu X, Chen X, Xu W, Xu W, Zhang H, Lin Y. Masking quercetin: A simple strategy for selective detection of rutin by combination of bovine serum albumin and fluorescent silicon nanoparticles. Anal Chim Acta 2020; 1126:7-15. [DOI: 10.1016/j.aca.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
|
19
|
El Jaouhari A, Yan L, Zhu J, Zhao D, Zaved Hossain Khan M, Liu X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 2020; 1106:103-114. [DOI: 10.1016/j.aca.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
20
|
Zhang W, Liu C, Liu F, Zou X, Xu Y, Xu X. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem 2020; 303:125378. [DOI: 10.1016/j.foodchem.2019.125378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/24/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
21
|
Takahashi S, Muguruma H, Osakabe N, Inoue H, Ohsawa T. Electrochemical determination with a long-length carbon nanotube electrode of quercetin glucosides in onion, apple peel, and tartary buckwheat. Food Chem 2019; 300:125189. [DOI: 10.1016/j.foodchem.2019.125189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
|
22
|
Patil AB, Huang Y, Ma L, Wu R, Meng Z, Kong L, Zhang Y, Zhang W, Liu Q, Liu XY. An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens Bioelectron 2019; 142:111595. [DOI: 10.1016/j.bios.2019.111595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
23
|
Lu L, Zhu Z, Hu X. Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Tursynbolat S, Bakytkarim Y, Huang J, Wang L. Highly sensitive simultaneous electrochemical determination of myricetin and rutin via solid phase extraction on a ternary Pt@r-GO@MWCNTs nanocomposite. J Pharm Anal 2019; 9:358-366. [PMID: 31929945 PMCID: PMC6951492 DOI: 10.1016/j.jpha.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023] Open
Abstract
The simultaneous electrochemical determination of myricetin and rutin remains a challenge due to their indistinguishable potentials. To solve this problem, we constructed a ternary platinum nanoparticle, reduced graphene oxide, multi-walled carbon nanotubes (Pt@r-GO@MWCNTs) nanocomposite via a facile one-pot synthetic method. Under the optimized conditions, the ternary Pt@r-GO@MWCNTs nanocomposite exhibited good electrocatalytic activity toward myricetin and rutin via solid phase extraction and excellent performance for the simultaneous determination of myricetin and rutin. The oxidation peak current of myricetin was proportional to its concentrations in the range of 0.05–50 μM with a detection limit of 0.01 μM (S/N = 3). The linear range for rutin was 0.05–50 μM with a detection limit of 0.005 μM (S/N = 3). The ternary nanocomposite sensor also exhibited good reproducibility and stability, and was successfully used for the simultaneous determination of myricetin and rutin in real orange juice samples with recoveries ranging between 100.57% and 108.46%.
Collapse
Affiliation(s)
- Satar Tursynbolat
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yrysgul Bakytkarim
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
25
|
He Q, Wu Y, Tian Y, Li G, Liu J, Deng P, Chen D. Facile Electrochemical Sensor for Nanomolar Rutin Detection Based on Magnetite Nanoparticles and Reduced Graphene Oxide Decorated Electrode. NANOMATERIALS 2019; 9:nano9010115. [PMID: 30669370 PMCID: PMC6359613 DOI: 10.3390/nano9010115] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
A new electrochemical sensor for nanomolar rutin detection based on amine-functionalized Fe3O4 nanoparticles and electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode (NH2-Fe3O4 NPs-ErGO/GCE) was fabricated through a simple method, and the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and electrochemical technique were used to characterize the modified electrode. The electrochemical behavior of rutin on the Fe3O4 NPs-ErGO/GCE was studied in detail. The electrochemical response of rutin at this modified electrode was remarkably higher than that of the bare GCE or other modified GCE (GO/GCE, Fe3O4 NPs-GO/GCE, and ErGO/GCE). Under the optimum determination conditions, Fe3O4 NPs-ErGO/GCE provided rutin with a broader detection range of 6.0 nM–0.1 µM; 0.1–8.0 µM and 8.0–80 µM, a minimum detectable concentration of 4.0 nM was obtained after 210 s accumulation. This novel method was applied in determination of rutin in pharmaceutical tablets and urine samples with satisfactory results.
Collapse
Affiliation(s)
- Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Yiyong Wu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
| | - Yaling Tian
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
| | - Guangli Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jun Liu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Peihong Deng
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds; Key Laboratory of functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Dongchu Chen
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
26
|
A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9353-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Beitollahi H, Movahedifar F, Tajik S, Jahani S. A Review on the Effects of Introducing CNTs in the Modification Process of Electrochemical Sensors. ELECTROANAL 2018. [DOI: 10.1002/elan.201800370] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment DepartmentInstitute of Science and High Technology and EnvironmentalSciencesGraduate University of Advanced Technology Kerman Iran
| | - Fahimeh Movahedifar
- Environment DepartmentInstitute of Science and High Technology and EnvironmentalSciencesGraduate University of Advanced Technology Kerman Iran
| | - Somayeh Tajik
- NanoBioElectrochemistry Research CenterBam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- NanoBioElectrochemistry Research CenterBam University of Medical Sciences Bam Iran
| |
Collapse
|
28
|
Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits. SENSORS 2018; 18:s18092934. [PMID: 30181437 PMCID: PMC6164375 DOI: 10.3390/s18092934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
Abstract
This work reports the development of a composite of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BP4) and chitosan (CS) described in previous reports through a new method using cyclic voltammetry with 10 cycles at a scan rate of 50.0 mV s−1. This method is different from usual methods such as casting, deposition, and constant potential, and it allows the development of an electroactive surface toward the oxidation of rutin by stripping voltammetry applied to the detection in tropical fruits such as orange, lemon, and agraz (Vaccinium meridionale Swartz), with results similar to those reported in previous studies. In addition, the surface was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Raman spectroscopy. The limit of detection was 0.07 µmol L−1 and the relative standard deviation (RSD) of 10 measurements using the same modified electrode was 0.86%. Moreover, the stability of the sensor was studied for six days using the same modified electrode, where the variation of the signal using a known concentration of rutin (RT) was found to be less than 5.0%. The method was validated using a urine chemistry control spiked with known amounts of RT and possible interference was studied using ten substances including organic and biological compounds, metal ions, and dyes. The results obtained in this study demonstrated that this electrodeveloped composite was sensitive, selective, and stable.
Collapse
|
29
|
Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Mikrochim Acta 2018; 185:414. [DOI: 10.1007/s00604-018-2947-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022]
|
30
|
Nagles E, Penagos-Llanos J, García-Beltrán O, Hurtado J. Determination of Rutin in Drinks Using an Electrode Modified with Carbon Nanotubes-Prussian Blue. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Fabrication of nickel coated graphene oxide composite electrode for sensitive determination of Rutin. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Sinduja B, Abraham John S. Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a non-essential amino acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:486-491. [PMID: 29291577 DOI: 10.1016/j.saa.2017.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 05/28/2023]
Abstract
The present study describes the synthesis of carbon dots (CDs) using a non-essential amino acid, asparagine as a precursor. The HR-TEM image shows that the size of the prepared CDs was 2.9±0.2nm with a spherical morphology. The UV-visible spectrum of CDs exhibits a major band at 307nm along with a shoulder band around 207nm corresponding to n-π* and π-π* transitions, respectively. Further, the CDs show emission maximum at 441nm when excited at 348nm. The synthesized CDs were then exploited for the determination of rutin by spectrofluorimetry based on the decrease in emission intensity at 441nm. It was found that emission intensity of CDs at 441nm was decreased while adding 0.5μM rutin to CDs. On the other hand, addition of other metal ions and anions including 5mM Mg2+, K+, Ca2+, Na+, NO3- and oxalate, 2.5mM Cu2+ and Fe3+ and 3mM glycine, glucose, histidine, proline and cysteine does not affect the emission intensity at 441nm. A good linearity was observed for the emission intensity against 0.5-15μM rutin with a correlation coefficient of 0.997 and the limit of detection was found to be 1×10-7M (61μg/L) (S/N=3). The real sample analysis was done by determining rutin in a pharmaceutical sample.
Collapse
Affiliation(s)
- B Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, India.
| |
Collapse
|
33
|
A real-time-range potentiostat coupled to nano-Au-modified microband electrode array for high-speed stripping determination of human blood lead. Biosens Bioelectron 2017; 97:267-272. [DOI: 10.1016/j.bios.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023]
|
34
|
Abdolhi N, Soltani A, Fadafan HK, Erfani-Moghadam V, Khalaji AD, Balakheyli H. Preparation, characterization and toxicity evaluation ofCo3O4and NiO-filled multi-walled carbon nanotubes loaded to chitosan. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Guo H, Gui R, Jin H, Wang Z. Facile construction of reduced graphene oxide–carbon dot complex embedded molecularly imprinted polymers for dual-amplification and selective electrochemical sensing of rutoside. NEW J CHEM 2017. [DOI: 10.1039/c7nj02103h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reported reduced graphene oxide–carbon dot embedded molecularly imprinted polymers for sensitive and selective electrochemical sensing of rutoside.
Collapse
Affiliation(s)
- Huijun Guo
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Rijun Gui
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Hui Jin
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| |
Collapse
|
36
|
Barathi P, Thirumalraj B, Chen SM, Subramania A. One-pot electrochemical preparation of copper species immobilized poly(o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H2O2 sensor. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox activity of copper species immobilized poly(o-aminophenol)/multi-walled carbon nanotube for direct electrocatalysis towards detection of H2O2.
Collapse
Affiliation(s)
- Palani Barathi
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - A. Subramania
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| |
Collapse
|
37
|
A sensitive and reliable rutin electrochemical sensor based on palladium phthalocyanine-MWCNTs-Nafion nanocomposite. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3447-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Determination of Rutin in Black Tea by Adsorption Voltammetry (AdV) in the Presence of Morin and Quercetin. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0538-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Zou C, Bin D, Yang B, Zhang K, Du Y. Rutin detection using highly electrochemical sensing amplified by an Au–Ag nanoring decorated N-doped graphene nanosheet. RSC Adv 2016. [DOI: 10.1039/c6ra22264a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel Au–Ag nanorings/NG modified electrode was found to have a wide linear range from 0.05 μM to 241.2 μM (S/N = 3) with a low detection limit of 0.01 μM when it was employed for rutin detection.
Collapse
Affiliation(s)
- Cui'e Zou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Duan Bin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Beibei Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Ke Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|