1
|
Chen ZZ, Dufresne J, Bowden P, Marshall JG. Comparison of the Human Plasma Peptides from the Fit of Fragmentation Spectra versus Accurate Monoisotopic Precursor Mass. ACS OMEGA 2025; 10:10796-10811. [PMID: 40160755 PMCID: PMC11947786 DOI: 10.1021/acsomega.4c06211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
In nature, ionized peptides with heavy isotopes and hydrogen rearrangements show a broad mass distribution with signals at discrete delta mass values from -3 to +5 Da by mass spectrometry (MS). For many peptides, the intensity of the +1 or +2 Da isotope exceeds the signal from the monoisotopic mass. Therefore, there is a need for a method that improves peptide identification from heavy isotopes or hydrogen rearrangements based on the fit of tandem mass spectra. Peptides may be identified using an accurate monoisotopic precursor mass with ≤0.1 Da. However, many peptides with heavy isotopes and H-loss can be identified and enumerated based on the fit of their MS/MS spectra alone in the absence of an accurate precursor monoisotopic mass (i.e., ± 3 Da) using the X!TANDEM MS/MS fitting algorithm. In this study, human plasma samples were analyzed with a highly resolving axially harmonic orbital ion trap (OIT) and a sensitive linear quadrupole ion trap (LIT). The MS/MS fragmentation spectra from the OIT can be fit to peptides from the monoisotopic (±0.1 Da) as well as all other precursor masses with a wide mass tolerance (±3 Da). The resulting delta mass distribution can then be plotted and compared to the predicted distribution of heavy isotopes and hydrogen rearrangements to provide a direct biophysical prediction and test the validity of the fit determined by accepting the best-fit MS/MS spectra. The OIT instrument, which has greater resolution, was sampled at 30 nL per minute, while the more sensitive LIT was sampled at 200 nL per minute. The MS/MS spectra generated by each instrument were fit to peptides within a wide window (±3 Da) using the rigorous X!TANDEM algorithm. The OIT and LIT results were compared in an SQL Server database and corrected against analytical and statistical controls. The delta mass distribution of the peptides with hydrogen rearrangements and heavy isotopes was determined from the fit MS/MS spectra using the R statistical program. The OIT sampled MS and MS/MS spectra from the high-intensity precursor ions by focusing on E7 to E9 detector counts. In contrast, the LIT sampled a range of precursor ion intensities focused from E4 to E7 and thus reached lower ion intensity values. As expected, the precursor mass [M + H]+ obtained by the OIT exhibited sharp delta mass peaks at -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da due to naturally occurring heavy isotopes and hydrogen rearrangements. The collection of peptides and proteins identified by OIT and LIT was in qualitative and quantitative agreement with one another, with 99.9% overlap on 2726 protein gene symbols from human plasma and a highly significant relationship by regression analysis. The protein p-values, false discovery rate q-values, and comparisons to the noise MS/MS analytical control and random MS/MS statistical control confirmed the high-confidence MS/MS identifications from both instruments. MS/MS fragmentation spectra from the OIT were fit to peptides. The resulting precursor ion delta mass distribution showed a precise match to the predicted isotope distributions and hydrogen rearrangements of natural peptides. Thus, analysis of delta mass plots provided powerful biophysical evidence for the accuracy of plasma peptide identification from the fit of the MS/MS spectra alone. The high level of agreement on proteins and peptides and the proportional enumeration between proteins identified by the OIT and those identified independently using a LIT confirmed that plasma peptides and proteins may be identified and quantified from MS/MS spectra alone without the need for an accurate measure of the precursor mass. The greater sensitivity and low cost of searching MS/MS spectra in the absence of an accurate mass mean that it is possible to identify and quantify more proteins for the discovery of proteins in clinical populations.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
2
|
Chen ZZ, Dufresne J, Bowden P, Celej D, Miao M, Marshall JG. Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS. Anal Biochem 2025; 697:115694. [PMID: 39442602 DOI: 10.1016/j.ab.2024.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Organic precipitation of proteins with acetonitrile demonstrated complete protein recovery and improved chromatography of human plasma proteins. The separation of 25 μL of human plasma into 22 fractions on a QA SAX resin facilitated more effective protein discovery despite the limited sample size. Micro chromatography of plasma proteins over quaternary amine (QA) strong anion exchange (SAX) resins performed best, followed by diethylaminoethyl (DEAE), heparin (HEP), carboxymethyl cellulose (CMC), and propyl sulfate (PS) resins. Two independent statistical methods, Monte Carlo comparison with random MS/MS spectra and the rigorous X!TANDEM goodness of fit algorithm protein p-values corrected to false discovery rate q-values (q ≤ 0.01) agreed on at least 12,000 plasma proteins, each represented by at least three fully tryptic corrected peptide observations. There was qualitative agreement on 9393 protein/gene symbols between the linear quadrupole versus orbital ion trap but also quantitative agreement with a highly significant linear regression relationship between log observation frequency (F value 4,173, p-value 2.2e-16). The use of a QA resin showed nearly perfect replication of all the proteins that were also found using DEAE-, HEP-, CMC-, and PS-based chromatographic methods combined and together estimated the size of the size of the plasma proteome as ≥12,000 gene symbols.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Dominika Celej
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
3
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Trypsin Digestion Conditions of Human Plasma for Observation of Peptides and Proteins from Tandem Mass Spectrometry. ACS OMEGA 2024; 9:41343-41354. [PMID: 39398168 PMCID: PMC11465567 DOI: 10.1021/acsomega.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Previous meta-analysis indicated that plasma or serum proteome groups using various experimental conditions detected different peptides from the same plasma proteins, which is strong evidence for the veracity of blood fluid LC-ESI-MS/MS but also evidences that the trypsin digestion step is a key source of variation in plasma proteomics. Agreement between different digestion conditions and MS/MS algorithms may serve as an independent confirmation of the validity of the LC-ESI-MS/MS analysis of plasma peptides. Plasma contains a high percentage of albumin held together by multiple disulfide bonds; hence, reduction and/or alkylation may greatly enhance the digestion efficiency of albumin. Plasma proteins were precipitated in 90% acetonitrile, collected over quaternary amine resin, and eluted in NaCl prior to digestion treatments. To determine the effect of trypsin digestion methods, the plasma proteins were digested in 600 mM urea and 5% acetonitrile with trypsin alone, or reduced with 2 mM DTT followed by trypsin, or DTT followed by 15 mM iodoacetamide and then trypsin. The resulting peptides were analyzed by LC-ESI-MS/MS with a linear quadrupole ion trap (LIT). The MS/MS spectra were directly fit to peptides by the X!TANDEM and SEQUEST algorithms. Blank noise injections served as the analytical control, and 30 million random MS/MS served as the statistical control. Digesting human plasma with DTT reduction, or reduction and alkylation, resulted in a dramatic increase in the number and observation frequency of albumin peptides. In contrast, digestion with trypsin alone suppressed the observation of albumin, and instead, many low abundance plasma and cellular proteins showed higher observation frequency. Digestion with trypsin alone increased the observation frequency of APOC1, ACAN, ATRN, CPB2, GP2, GPX3, HBA1, PAPD5, PKD1, and many cellular proteins. After correction against noise and random controls, SEQUEST showed good agreement with the true positive plasma proteins identified by X!TANDEM and resulted in an R-squared of 0.5238 with an F-statistic of 10,930 on 9,935 protein gene symbols with a p-value < 2.2e-16. Digestion of plasma with trypsin alone avoids the complete digestion of albumin and permits the enhanced detection of some other cellular proteins from plasma. Different digestion approaches were complimentary and together resulted in a more comprehensive plasma proteome. The protein FDR q-values, the modest effect of background and Monte Carlo correction, and the significant STRING analysis were all consistent with the high fidelity of the rigorous X!TANDEM algorithm. In contrast, SEQUEST required significant correction against noise and statistical controls and selection of high cross correlation (XCorr) scores to show good agreement with X!TANDEM. There was qualitative and quantitative agreement between plasma proteins digested without alkylation from the orbital ion trap (OIT) versus the LIT instrument that showed highly significant regression against the X!TANDEM OIT monoisotopic results, those from heavy isotopes and other masses from X!TANDEM, and with those from MaxQuant. There was significant qualitative and quantitative agreement between the complementary digestion conditions consistent with the good fidelity of plasma analysis by LC-ESI-MS/MS with a sensitive linear ion trap.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Jaimie Dufresne
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Peter Bowden
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - Ming Miao
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| | - John G. Marshall
- Research Analytical Biochemistry
Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto M5B 2K3, Canada
| |
Collapse
|
4
|
Chen ZZ, Dufresne J, Bowden P, Miao M, Marshall JG. Extraction of naturally occurring peptides versus the tryptic digestion of proteins from fetal versus adult bovine serum for LC-ESI-MS/MS. Anal Biochem 2024; 689:115497. [PMID: 38461948 DOI: 10.1016/j.ab.2024.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The naturally occurring peptides and digested proteins of fetal versus adult bovine serum were compared by LC-ESI-MS/MS after correction against noise from blank injections and random MS/MS spectra as statistical controls. Serum peptides were extracted by differential precipitation with mixtures of acetonitrile and water. Serum proteins were separated by partition chromatography over quaternary amine resin followed by tryptic digestion. The rigorous X!TANDEM goodness of fit algorithm that has a low error rate as demonstrated by low FDR q-values (q ≤ 0.01) showed qualitative and quantitative agreement with the SEQUEST cross correlation algorithm on 12,052 protein gene symbols. Tryptic digestion provided a quantitative identification of the serum proteins where observation frequency reflected known high abundance. In contrast, the naturally occurring peptides reflected the cleavage of common serum proteins such as C4A, C3, FGB, HPX, A2M but also proteins in lower concentration such as F13A1, IK, collagens and protocadherins. Proteins associated with cellular growth and development such as actins (ACT), ribosomal proteins like Ribosomal protein S6 (RPS6), synthetic enzymes and extracellular matrix factors were enriched in fetal calf serum. In contrast to the large literature from cord blood, IgG light chains were absent from fetal serum as observed by LC-ESI-MS/MS and confirmed by ELISA.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
5
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
6
|
Thavarajah T, Dos Santos CC, Slutsky AS, Marshall JC, Bowden P, Romaschin A, Marshall JG. The plasma peptides of sepsis. Clin Proteomics 2020; 17:26. [PMID: 32636717 PMCID: PMC7331219 DOI: 10.1186/s12014-020-09288-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background A practical strategy to discover sepsis specific proteins may be to compare the plasma peptides and proteins from patients in the intensive care unit with and without sepsis. The aim was to discover proteins and/or peptides that show greater observation frequency and/or precursor intensity in sepsis. The endogenous tryptic peptides of ICU-Sepsis were compared to ICU Control, ovarian cancer, breast cancer, female normal, sepsis, heart attack, Alzheimer’s and multiple sclerosis along with their institution-matched controls, female normals and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual sepsis and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The protein observation frequency of ICU-sepsis versus ICU Control was subsequently tested by Chi square analysis. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as ITIH3, SAA2, SAA1, and FN1 showed increased observation frequency by Chi square (χ2 > 9, p < 0.003) and/or precursor intensity in sepsis. Cellular gene symbols with large Chi square values from tryptic peptides included POTEB, CTNNA1, U2SURP, KIF24, NLGN2, KSR1, GTF2H1, KIT, RPS6KL1, VAV2, HSPA7, SMC2, TCEB3B, ZNF300, SUPV3L1, ADAMTS20, LAMB4, MCCC1, SUPT6H, SCN9A, SBNO1, EPHA1, ABLIM2, cB5E3.2, EPHA10, GRIN2B, HIVEP2, CCL16, TKT, LRP2 and TMF1 amongst others showed increased observation frequency. Similarly, increased frequency of tryptic phosphopeptides were observed from POM121C, SCN8A, TMED8, NSUN7, SLX4, MADD, DNLZ, PDE3B, UTY, DEPDC7, MTX1, MYO1E, RXRB, SYDE1, FN1, PUS7L, FYCO1, USP26, ACAP2, AHI1, KSR2, LMAN1, ZNF280D and SLC8A2 amongst others. Increases in mean precursor intensity in peptides from common plasma proteins such as ITIH3, SAA2, SAA1, and FN1 as well as cellular proteins such as COL24A1, POTEB, KANK1, SDCBP2, DNAH11, ADAMTS7, MLLT1, TTC21A, TSHR, SLX4, MTCH1, and PUS7L among others were associated with sepsis. The processing of SAA1 included the cleavage of the terminal peptide D/PNHFRPAGLPEKY from the most hydrophilic point of SAA1 on the COOH side of the cystatin C binding that was most apparent in ICU-Sepsis patients compared to all other diseases and controls. Additional cleavage of SAA1 on the NH2 terminus side of the cystatin binding site were observed in ICU-Sepsis. Thus there was disease associated variation in the processing of SAA1 in ICU-Sepsis versus ICU controls or other diseases and controls. Conclusion Specific proteins and peptides that vary between diseases might be discovered by the random and independent sampling of multiple disease and control plasma from different hospital and clinics by LC–ESI–MS/MS for storage in a relational SQL Server database and analysis with the R statistical system that will be a powerful tool for clinical research. The processing of SAA1 may play an unappreciated role in the inflammatory response to Sepsis.
Collapse
Affiliation(s)
- Thanusi Thavarajah
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Claudia C Dos Santos
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Arthur S Slutsky
- St. Michael's Hospital, Keenan Chair in Medicine, University of Toronto, Toronto, Canada
| | - John C Marshall
- International Biobank of Luxembourg (IBBL), Institute of Health (formerly CRP Sante Luxembourg), Dudelange, Luxembourg
| | - Pete Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Alexander Romaschin
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,International Biobank of Luxembourg (IBBL), Institute of Health (formerly CRP Sante Luxembourg), Dudelange, Luxembourg
| |
Collapse
|
7
|
Elevated level of circulatory sTLT1 induces inflammation through SYK/MEK/ERK signalling in coronary artery disease. Clin Sci (Lond) 2020; 133:2283-2299. [PMID: 31713591 DOI: 10.1042/cs20190999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.
Collapse
|
8
|
Thavarajah T, Tucholska M, Zhu PH, Bowden P, Marshall JG. Re-evaluation of the 18 non-human protein standards used to create the empirical statistical model for decoy library searching. Anal Biochem 2020; 599:113680. [PMID: 32194076 DOI: 10.1016/j.ab.2020.113680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The Empirical Statistical Model (ESM) for decoy library searching fused the expected amino acid sequence of 18 non-human protein standards to a human decoy library. The ESM assumed a priori the standards were pure such that only the 18 nominal proteins were true positive, all other proteins were false positive, there was no overlap in the peptides of non-human proteins versus human proteins, and that the score distribution of individual peptides would resolve true positive from false positive results or noise. The results of random and independent sampling by LC-ESI-MS/MS indicated that the fundamental assumptions of the ESM were not in good agreement with the actual purity of the commercial test standards and so the method showed a 99.7% false negative rate. The ESM for decoy library searching apparently showed poor agreement with SDS-PAGE using silver staining, goodness of fit of MS/MS spectra by X!TANDEM, FDR correction by Benjamini and Hochberg, or comparison to the observation frequency of null random MS/MS spectra, that all confirmed the standards contain hundreds of proteins with a low FDR of primary structural identification. The protein observation frequency increased with abundance and the log10 precursor intensity distributions were Gaussian and nearly ideal for relative quantification.
Collapse
Affiliation(s)
- Thanusi Thavarajah
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, Canada; Ryerson Analytical Biochemistry Laboratory (RABL), Canada
| | - Monika Tucholska
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, Canada; Ryerson Analytical Biochemistry Laboratory (RABL), Canada
| | - Pei-Hong Zhu
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, Canada; Ryerson Analytical Biochemistry Laboratory (RABL), Canada
| | - Peter Bowden
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, Canada; Ryerson Analytical Biochemistry Laboratory (RABL), Canada
| | - John G Marshall
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, Canada; Ryerson Analytical Biochemistry Laboratory (RABL), Canada.
| |
Collapse
|
9
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptides of breast versus ovarian cancer. Clin Proteomics 2019; 16:43. [PMID: 31889940 PMCID: PMC6927194 DOI: 10.1186/s12014-019-9262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. Conclusion There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, Professor of Medicine, Surgery & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Dept of Clinical Chemsitry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
10
|
Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem 2019; 411:4193-4202. [PMID: 31093697 DOI: 10.1007/s00216-019-01825-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
Ru(bpy)3@SiO2-COOH and Ru(bpy)3@SiO2@CD47-peptide nanoparticles (NPs) with fluorescent and mass spectrometric properties were designed and synthesized as the models of drug-nanocarriers. Their phagocytic internalization could be quantitatively measured using more sensitive inductively coupled plasma mass spectrometry (ICPMS) (102Ru) versus traditional laser confocal scanning microscope (λex/em = 458/600 nm) for the first time. Modification of a self-signal trigging CD47-peptide on the NPs' surface decreased internalization by 10 times, (2.79 ± 0.21) × 104 Ru(bpy)3@SiO2-COOH and (0.28 ± 0.04) × 104 Ru(bpy)3@SiO2@CD47-peptide NPs per RAW264.7 macrophage (n = 5). The alkynyl-linked CD47-peptide allowed us to quantify the number (2412 ± 250) of CD47-peptide modified on the NP and the total content (5.14 ± 0.25 amol) of signal regulatory protein α (SIRPα) on the macrophage by measuring the clickable tagged Eu using ICPMS. Furthermore, the interaction between CD47-peptide and SIRPα as well as the changes of the remaining free SIRPα during the internalization process of Ru(bpy)3@SiO2@CD47-peptide NPs were quantitatively evaluated, providing direct experimental evidence of the longspeculated crucial CD47-SIRPα interaction for drug-nanocarriers to escape internalization by phagocytic cells. Remarkable difference in the internalization ratio of 12.3 ± 4.8 of Ru(bpy)3@SiO2-COOH NPs and 4.3 ± 0.5 Ru(bpy)3@SiO2@CD47-peptide NPs with and without the protein corona indicated that CD47-peptide still worked when the protein corona formed. Not limited to the evaluation of the NPs studied here, such a fluorescent and mass spectrometric approach is very much expected to apply to the assessment of other drug-nanocarriers designed by chemists and before their medical applications. Graphical abstract.
Collapse
|
11
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen CE, Diamandis EP, Michael Siu KW, Marshall JG. The plasma peptides of ovarian cancer. Clin Proteomics 2018; 15:41. [PMID: 30598658 PMCID: PMC6302491 DOI: 10.1186/s12014-018-9215-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. Methods The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. Results Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey–Kramer HSD test. Conclusion Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC–ESI–MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC–ESI–MS/MS that will be a powerful tool for clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4Keenan Chair in Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Alexander Romaschin
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - John C Marshall
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- 10Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg.,14Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| |
Collapse
|
12
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptidome. Clin Proteomics 2018; 15:39. [PMID: 30519149 PMCID: PMC6271647 DOI: 10.1186/s12014-018-9211-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC–ESI–MS/MS to identify, with a linear quadrupole ion trap to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations. Methods A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC–ESI–MS/MS experiments analyzed in SQL Server R. Results Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 μL of plasma with nano electrospray resulted in the confident identification and quantification ~ 14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥ E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~ 26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~ 0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey–Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes. Conclusions The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC–ESI–MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system. Electronic supplementary material The online version of this article (10.1186/s12014-018-9211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Department of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Department of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St, Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
13
|
Dufresne J, Florentinus-Mefailoski A, Zhu PH, Bowden P, Marshall JG. Re-evaluation of the rabbit myosin protein standard used to create the empirical statistical model for decoy library searching. Anal Biochem 2018; 560:39-49. [PMID: 30171831 DOI: 10.1016/j.ab.2018.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/28/2023]
Abstract
A Rabbit myosin standard, like that used to create the empirical statistical model, was randomly and independently sampled by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) with a linear quadrupole ion trap. The rabbit myosin protein standard appeared pure by SDS-PAGE and CBBR staining but showed many other proteins by silver staining. The LC-MS intensity from myosin and IgG samples were above the 99% safe limit of detection and quantification computed from 36 blank LC-ESI-MS/MS runs. The myosin contained ≤406 Gene Symbols, open reading frames or loci where 79 protein types showed ≥3 peptides from X!TANDEM. Myosins, actin, troponin, other proteins showed 95%-100% homology between the rabbit versus the human decoy library. The myosin protein complex from STRING was true positive compared to random or noise spectra MS/MS with a low type I error (p-value) and low FDR (q-value) computed in R. SDS-PAGE, Western blot, comparison to random and noise MS/MS spectra, X!TANDEM p-values, FDR corrected q-values, and STRING all agreed that the error rate of LC-ESI-MS/MS with a quadrupole ion trap is far below that assumed a priori by the design of the empirical statistical model for decoy library searching.
Collapse
Affiliation(s)
- Jaimie Dufresne
- Ryerson Analytical Biochemistry Laboratory (RABL), Kerr Hall East Rm 332b, Department of Chemistry and Biology, Faculty of Science, Ryerson University, Canada
| | - Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Kerr Hall East Rm 332b, Department of Chemistry and Biology, Faculty of Science, Ryerson University, Canada
| | - Pei-Hong Zhu
- Ryerson Analytical Biochemistry Laboratory (RABL), Kerr Hall East Rm 332b, Department of Chemistry and Biology, Faculty of Science, Ryerson University, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Kerr Hall East Rm 332b, Department of Chemistry and Biology, Faculty of Science, Ryerson University, Canada
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Kerr Hall East Rm 332b, Department of Chemistry and Biology, Faculty of Science, Ryerson University, Canada.
| |
Collapse
|
14
|
Dufresne J, Florentinus-Mefailoski A, Ajambo J, Ferwa A, Bowden P, Marshall J. Random and independent sampling of endogenous tryptic peptides from normal human EDTA plasma by liquid chromatography micro electrospray ionization and tandem mass spectrometry. Clin Proteomics 2017; 14:41. [PMID: 29234243 PMCID: PMC5721679 DOI: 10.1186/s12014-017-9176-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022] Open
Abstract
Background Normal human EDTA plasma samples were collected on ice, processed ice cold, and stored in a freezer at – 80 °C prior to experiments. Plasma test samples from the – 80 °C freezer were thawed on ice or intentionally warmed to room temperature. Methods Protein content was measured by CBBR binding and the release of alcohol soluble amines by the Cd ninhydrin assay. Plasma peptides released over time were collected over C18 for random and independent sampling by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) and correlated with X!TANDEM. Results Fully tryptic peptides by X!TANDEM returned a similar set of proteins, but was more computationally efficient, than “no enzyme” correlations. Plasma samples maintained on ice, or ice with a cocktail of protease inhibitors, showed lower background amounts of plasma peptides compared to samples incubated at room temperature. Regression analysis indicated that warming plasma to room temperature, versus ice cold, resulted in a ~ twofold increase in the frequency of peptide identification over hours–days of incubation at room temperature. The type I error rate of the protein identification from the X!TANDEM algorithm combined was estimated to be low compared to a null model of computer generated random MS/MS spectra. Conclusion The peptides of human plasma were identified and quantified with low error rates by random and independent sampling that revealed 1000s of peptides from hundreds of human plasma proteins from endogenous tryptic peptides. Electronic supplementary material The online version of this article (10.1186/s12014-017-9176-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | | | - Juliet Ajambo
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Ammara Ferwa
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Peter Bowden
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - John Marshall
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada.,Integrated BioBank of Luxembourg, 6 r. Nicolas-Ernest Barblé, Dudelange, 1210 Luxembourg
| |
Collapse
|
15
|
The proteins cleaved by endogenous tryptic proteases in normal EDTA plasma by C18 collection of peptides for liquid chromatography micro electrospray ionization and tandem mass spectrometry. Clin Proteomics 2017; 14:39. [PMID: 29213220 PMCID: PMC5712186 DOI: 10.1186/s12014-017-9174-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
The tryptic peptides from ice cold versus room temperature plasma were identified by C18 liquid chromatography and micro electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS). Samples collected on ice showed low levels of endogenous tryptic peptides compared to the same samples incubated at room temperature. Plasma on ice contained peptides from albumin, complement, and apolipoproteins and others that were observed by the X!TANDEM and SEQUEST algorithms. In contrast to ice cold samples, after incubation at room temperature, greater numbers of tryptic peptides from well characterized plasma proteins, and from cellular proteins were observed. A total of 583,927 precursor ions and MS/MS spectra were correlated to 94,669 best fit peptides that reduced to 22,287 correlations to the best accession within a gene symbol and to 7174 correlations to at least 510 gene symbols with ≥ 5 independent MS/MS correlations (peptide counts) that showed FDR q-values ranging from E−9 (i.e. FDR = 0.000000001) to E−227. A set of 528 gene symbols identified by X!TANDEM and SEQUEST including C4B showed ≥ fivefold variation between ice cold versus room temperature incubation. STRING analysis of the protein gene symbols observed from endogenous peptides in normal plasma revealed an extensive protein-interaction network of cellular factors associated with cell signalling and regulation, the formation of membrane bound organelles, cellular exosomes and exocytosis network proteins. Taken together the results indicated that a pool of cellular proteins, or protein complexes, in plasma are apparently not stable and degrade soon after incubation at room temperature.
Collapse
|