1
|
Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M, Cianférani S, Ferry G, Boutin JA. VHH characterization.Recombinant VHHs: Production, characterization and affinity. Anal Biochem 2019; 589:113491. [PMID: 31676284 DOI: 10.1016/j.ab.2019.113491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Among the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein. Because they differ slightly in global structure, they are good models to assess our body of analytical methodologies. The VHHs were expressed in several bacteria strains in order to identify and overcome the bottlenecks to obtain homogeneous preparations of this protein. A large panel of biophysical tools, ranging from spectroscopy to mass spectrometry, was here combined to assess VHH structural features and the impact of the disulfide bond. The routes are now ready to move to more complex VHHs raised against specific targets in numerous areas including oncology.
Collapse
Affiliation(s)
- Eric Chabrol
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Alexandre Nicolas
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Benjamin Fould
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Mathias Antoine
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Gilles Ferry
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.
| | - Jean A Boutin
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France; Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes Cedex, France.
| |
Collapse
|
2
|
Hartmann L, Botzanowski T, Galibert M, Jullian M, Chabrol E, Zeder-Lutz G, Kugler V, Stojko J, Strub JM, Ferry G, Frankiewicz L, Puget K, Wagner R, Cianférani S, Boutin JA. VHH characterization. Comparison of recombinant with chemically synthesized anti-HER2 VHH. Protein Sci 2019; 28:1865-1879. [PMID: 31423659 DOI: 10.1002/pro.3712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
In the continuous exploration of the VHH chemistry, biochemistry and therapeutic future use, we investigated two different production strategies of this small antibody-like protein, using an anti-HER2 VHH as a model. The total chemical synthesis of the 125 amino-acid peptide was performed with reasonable yield, even if optimization will be necessary to upgrade this kind of production. In parallel, we expressed the same sequence in two different hosts: Escherichia coli and Pichia pastoris. Both productions were successful and led to a fair amount of VHHs. The integrity and conformation of the VHH were characterized by complementary mass spectrometry approaches, while surface plasmon resonance experiments were used to assess the VHH recognition capacity and affinity toward its "antigen." Using this combination of orthogonal techniques, it was possible to show that the three VHHs-whether synthetic or recombinant ones-were properly and similarly folded and recognized the "antigen" HER2 with similar affinities, in the nanomolar range. This opens a route toward further exploration of modified VHH with unnatural amino acids and subsequently, VHH-drug conjugates.
Collapse
Affiliation(s)
- Lucie Hartmann
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | - Eric Chabrol
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | - Gabrielle Zeder-Lutz
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Valérie Kugler
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Johann Stojko
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | - Gilles Ferry
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | | | | | - Renaud Wagner
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, Suresnes, France
| |
Collapse
|
3
|
Boutin JA, Tartar AL, van Dorsselaer A, Vaudry H. General lack of structural characterization of chemically synthesized long peptides. Protein Sci 2019; 28:857-867. [PMID: 30851143 PMCID: PMC6459998 DOI: 10.1002/pro.3601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Many peptide chemistry scientists have been reporting extremely interesting work on the basis of chemical peptides for which the only characterization was their purity, mass, and biological activity. It seems slightly overenthusiastic, as many of these structures should be thoroughly characterized first to demonstrate the uniqueness of the structure, as opposed to the uniqueness of the sequence. Among the peptides of identical sequences in the final chemical preparation, what amount of well-folded peptide supports the measured activity? The activity of a peptide preparation cannot prove the purity of the desired peptide. Therefore, greater care should be taken in characterizing peptides, particularly those coming from chemical synthesis. At a time when the pharmaceutical industry is changing its paradigm by moving substantially from small molecules to biologics to better serve patients' needs, it is important to understand the limitations of the descriptions of these products and to start to apply the same "good laboratory practices" to our peptide research. Here, we attempt to delineate how synthetic peptides are described and characterized and what will be needed to describe them in regards to how they are well-folded and homogeneous in their tertiary structure. Older studies were done when the tools were not yet discovered, but more recent publications are still lacking proper descriptions of these peptides. Modern tools of analysis are capable of segregating folded and unfolded peptides, even if the preparation is biologically active.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales Servier50 rue Carnot, 92284, Suresnes‐CedexFrance
| | - André L. Tartar
- Faculté de Pharmacie 3rue du Professeur Laguesse, BP83 ‐ 59006, Lille‐CedexFrance
| | - Alain van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio‐Organique, Département des Sciences AnalytiquesInstitut Pluridisciplinaire Hubert CurienUMR 7178 (CNRS‐UdS), ECPM, 25 rue Becquerel, F67087, Strasbourg‐Cedex 2France
| | - Hubert Vaudry
- Plate‐Forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN)Institut de Recherche et d'Innovation Biomédicales (IRIB), Université de Rouen76821, Mont‐Saint‐Aignan CedexFrance
| |
Collapse
|