1
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
2
|
Hernychova L, Alexandri E, Tzakos AG, Zatloukalová M, Primikyri A, Gerothanassis IP, Uhrik L, Šebela M, Kopečný D, Jedinák L, Vacek J. Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int J Biol Macromol 2022; 203:116-129. [PMID: 35063491 DOI: 10.1016/j.ijbiomac.2022.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/25/2021] [Accepted: 01/08/2022] [Indexed: 12/19/2022]
Abstract
This work explores the interaction of 9/10-nitro-oleic acid (NO2-OA) with human serum albumin (HSA). The molecular mechanism of the biological action of NO2-OA is to our knowledge based on a reversible covalent reaction-Michael addition of nucleophilic amino acid residues of proteins. Since HSA is an important fatty acid transporter, a key question is whether NO2-OA can bind covalently or non-covalently to HSA, similarly to oleic acid (OA), which can interact with the FA1-FA7 binding sites of the HSA molecule. 1H NMR studies and competition analysis with OA and the drugs ibuprofen and warfarin were used to investigate a potential non-covalent binding mode. NO2-OA/HSA binding was confirmed to compete with warfarin for FA-7 with significantly higher affinity. NO2-OA competes with ibuprofen for FA-3 and FA-6, however, in contrast to the situation with warfarin, the binding affinities are not significantly different. The described interactions are based exclusively on non-covalent binding. No covalent binding of NO2-OA to HSA was detected by MS/MS. More detailed studies based on MALDI-TOF-MS and Ellman's assay indicated that HSA can be covalently modified in the presence of NO2-OA to a very limited extent. It was also shown that NO2-OA has a higher affinity to HSA than that of OA.
Collapse
Affiliation(s)
- Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic
| | - Eleni Alexandri
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 451 10, Greece
| | - Andreas G Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 451 10, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Alexandra Primikyri
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 451 10, Greece
| | - Ioannis P Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 451 10, Greece
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Lukáš Jedinák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 775 15, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, Brno 612 65, Czech Republic.
| |
Collapse
|
3
|
Novák D, Vrba J, Zatloukalová M, Roubalová L, Stolarczyk K, Dorčák V, Vacek J. Cysteamine assay for the evaluation of bioactive electrophiles. Free Radic Biol Med 2021; 164:381-389. [PMID: 33429019 DOI: 10.1016/j.freeradbiomed.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
Covalent modifications of thiol and amine groups may control the function of proteins involved in the regulatory and signaling pathways of the cell. In this study, we developed a simple cysteamine assay which can be used to study the reactivity of electrophilic compounds towards primary amine and thiol groups in an aqueous environment. The detection principle is based on the electrochemical, photometrical and mass spectrometric analyses of cysteamine (2-aminoethanethiol) as the molecular probe. This technique is useful for studying the reaction kinetics of electrophiles with thiol (SH) and amino (NH2) groups. The decrease in analytical responses of cysteamine was monitored to evaluate the reactivity of three electrophilic activators of the Nrf2 pathway, which mediates the cellular stress response. The SH-reactivity under cell-free conditions of the tested electrophiles decreased in the following order: 4-hydroxy-2-nonenal ≥ nitro-oleic acid > sulforaphane. However, as shown in RAW264.7 cells, the tested compounds activated Nrf2-dependent gene expression in the opposite order: sulforaphane > nitro-oleic acid ≥ 4-hydroxy-2-nonenal. Although other factors in addition to chemical reactivity play a role in biological systems, we conclude that this cysteamine assay is a useful tool for screening potentially bioactive electrophiles and for studying their reactivity at a molecular level.
Collapse
Affiliation(s)
- David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic
| | - Krzysztof Stolarczyk
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic; Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093, Warsaw, Poland
| | - Vlastimil Dorčák
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno, 612 65, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 77515, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
4
|
Sensors and microarrays in protein biomarker monitoring: an electrochemical perspective spots. Bioanalysis 2020; 12:1337-1345. [PMID: 32915086 DOI: 10.4155/bio-2020-0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of clinically applicable portable sensors and multiplex protein biomarker assays is one of the most important goals of laboratory medicine today. Sensing strategies based on electrochemical devices are discussed in this overview, with special emphasis on detection principles derived from voltammetry, electrogenerated chemiluminescence, bipolar electrochemistry and impedance-based measurements. Up-to-date examples of electrochemical methods in biomedical research and development are highlighted here, including critical evaluation and future directions of the analysis, development and validation of new protein biomarkers.
Collapse
|
5
|
Černocká H, Izadi N, Ostatná V, Strmečki S. BSA‐Polysaccharide Interactions at Negatively Charged Electrode Surface. Effects of Current Density. ELECTROANAL 2019. [DOI: 10.1002/elan.201900231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hana Černocká
- Institute of BiophysicsAcademy of the Sciences of the Czech Republic v.v.i., Kralovopolska 135 612 65 Brno Czech Republic
| | - Nasim Izadi
- Institute of BiophysicsAcademy of the Sciences of the Czech Republic v.v.i., Kralovopolska 135 612 65 Brno Czech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University Kotlarska 2 611 37 Brno Czech Republic
| | - Veronika Ostatná
- Institute of BiophysicsAcademy of the Sciences of the Czech Republic v.v.i., Kralovopolska 135 612 65 Brno Czech Republic
| | - Slađana Strmečki
- Institute of BiophysicsAcademy of the Sciences of the Czech Republic v.v.i., Kralovopolska 135 612 65 Brno Czech Republic
- Ruđer Bošković InstituteDivision for Marine and Environmental Research Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
6
|
Zatloukalova M, Mojovic M, Pavicevic A, Kabelac M, Freeman BA, Pekarova M, Vacek J. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol 2019; 24:101213. [PMID: 31170679 PMCID: PMC6554544 DOI: 10.1016/j.redox.2019.101213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Nitro-fatty acids modulate inflammatory and metabolic stress responses, thus displaying potential as new drug candidates. Herein, we evaluate the redox behavior of nitro-oleic acid (NO2-OA) and its ability to bind to the fatty acid transporter human serum albumin (HSA). The nitro group of NO2-OA underwent electrochemical reduction at -0.75 V at pH 7.4 in an aqueous milieu. Based on observations of the R-NO2 reduction process, the stability and reactivity of NO2-OA was measured in comparison to oleic acid (OA) as the negative control. These electrochemically-based results were reinforced by computational quantum mechanical modeling. DFT calculations indicated that both the C9-NO2 and C10-NO2 positional isomers of NO2-OA occurred in two conformers with different internal angles (69° and 110°) between the methyl- and carboxylate termini. Both NO2-OA positional isomers have LUMO energies of around -0.7 eV, affirming the electrophilic properties of fatty acid nitroalkenes. In addition, the binding of NO2-OA and OA with HSA revealed a molar ratio of ~7:1 [NO2-OA]:[HSA]. These binding experiments were performed using both an electrocatalytic approach and electron paramagnetic resonance (EPR) spectroscopy using 16-doxyl stearic acid. Using a Fe(DTCS)2 spin-trap, EPR studies also showed that the release of the nitro moiety of NO2-OA resulted in the formation of nitric oxide radical. Finally, the interaction of NO2-OA with HSA was monitored via Tyr and Trp residue electro-oxidation. The results indicate that not only non-covalent binding but also NO2-OA-HSA adduction mechanisms should be taken into consideration. This study of the redox properties of NO2-OA is applicable to the characterization of other electrophilic mediators of biological and pharmacological relevance.
Collapse
Affiliation(s)
- Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Milos Mojovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Aleksandra Pavicevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice 370 05, Czech Republic
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15261, USA
| | - Michaela Pekarova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno 612 65, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno 612 65, Czech Republic.
| |
Collapse
|
7
|
Enache TA, Matei E, Diculescu VC. Electrochemical Sensor for Carbonyl Groups in Oxidized Proteins. Anal Chem 2019; 91:1920-1927. [PMID: 30574784 DOI: 10.1021/acs.analchem.8b03969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of proteins with free radicals leads, among other types of damages, to the production of stable carbonyl groups, which can be used as a quantification of oxidative stress at proteins level. The aim of this study was the development of an electrochemical sensor for the detection of carbonyl groups in proteins oxidized by reactive oxygen species. Its working principle is based on the redox properties of dinitrophenylhydrazine (DNPH). BSA was used as a model protein and its oxidation achieved through Fenton reactions. Using differential pulse voltammetry at glassy carbon electrode, the electrochemical behavior of DNPH and of the native and oxidized BSA was investigated in solution. It has been shown that the hydrazine moiety of the DNPH is the electroactive center and is responsible for carbonyl complexation. Special attention was paid to the immobilization of the DNPH in order to retain its redox properties, and this was achieved on a mixed 4-styrenesulfonic acid-nafion matrix. The sensor's surface characterization and the detection of carbonyl groups in oxidized protein were performed by voltammetry, Fourier-transformed infrared spectroscopy and scanning electron microscopy while the voltammetric results were confirmed by surface plasmon resonance measurements. It has been shown that upon interaction with carbonyl groups of the oxidized protein, the oxidation peak of the hydrazine moiety of DNPH decreases as a function of incubation time and protein concentration. The sensor sensitivity was 0.015 nmol carbonyl per mg of oxidized protein and detection limits of 50 μg oxidized BSA and 0.75 pmol carbonyls.
Collapse
Affiliation(s)
- Teodor Adrian Enache
- National Institute of Materials Physics , Atomistilor 405A , 077125 , Magurele , Romania
| | - Elena Matei
- National Institute of Materials Physics , Atomistilor 405A , 077125 , Magurele , Romania
| | | |
Collapse
|