Rejeeth C, Almeer R, Sharma A, Varukattu NB. Label-free electrochemical assessment of human serum and cancer cells to determine the folate receptor cancer biomarker.
Bioelectrochemistry 2025;
163:108883. [PMID:
39729969 DOI:
10.1016/j.bioelechem.2024.108883]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR. To overcome the limitations of traditional immunological methods, which rely on antigen-antibody interactions, we utilized a charge-based affinity approach. Folic acid (FA) was conjugated with poly (diallyl dimethylammonium chloride) (PDDA) using an EDC-NHS linker on the surface of multi-walled carbon nanotubes. The biosensor enabled electrochemical detection of FR through differential pulse voltammetry (DPV), achieving an impressive detection limit of 1.6 pg/mL and a dynamic range of 1-10,000 ng/mL. Additionally, the biosensor exhibited excellent stability (30 days), high selectivity, and repeatability (RSD = 3.14 %, n = 5). This work presents a promising strategy for developing ligand-receptor-based biosensors. It paves the way for future applications in cancer diagnostics and biosystem interfaces, offering high performance and practical advantages.
Collapse