1
|
Kune C, Tielens S, Baiwir D, Fléron M, Vandormael D, Eppe G, Nguyen L, Mazzucchelli G. SIGNIFICANT IMPACT OF CONSUMABLE MATERIAL AND BUFFER COMPOSITION FOR LOW-CELL NUMBER PROTEOMIC SAMPLE PREPARATION. Anal Chem 2025; 97:3836-3845. [PMID: 39933935 DOI: 10.1021/acs.analchem.4c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Proteomics, essential for understanding gene and cell functions, faces challenges with peptide loss due to adsorption onto vial surfaces, especially in samples with low peptide quantities. Using HeLa tryptic digested standard solutions, we demonstrate preferential adsorption of peptides, particularly hydrophobic ones, onto polypropylene (PP) vials, leading to nonuniform signal loss. This phenomenon can alter protein quantification (e.g., Label-Free Quantification, LFQ) if no appropriate data processing is applied. Our study is based on understanding this adsorption phenomenon to establish recommendations for minimizing peptide loss. To address this issue, we evaluated the nature of surface material and buffer additives to reduce peptide-surface noncovalent binding. Here, we report that using vials made from polymer containing polar monomeric units such as poly(methyl methacrylate) (PMMA) or polyethylene terephthalate (PET) drastically reduces the hydrophobic peptide loss, increasing the global proteomics performance (4-fold increase in identified peptides for the single-cell equivalent peptide content range). Additionally, the incorporation of nonionic detergents like poly(ethylene oxide) (PEO) and n-Dodecyl-Beta-Maltoside (DDM) at optimized concentrations (0.0001% and 0.0075%, respectively) improves the overall proteomic performance and consistency, even across different vial materials. Implementing these recommendations on 0.2 ng/μL HeLa tryptic digest results in a 10-fold increase in terms of peptide signal. Application to True Single-Cell sample preparation without specialized instrumentation dramatically improves the performance, allowing for the identification of approximately 650 proteins, a stark contrast to none detected with classical protocols.
Collapse
Affiliation(s)
- Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege B-4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, University of Liège, Liège B-4000, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liège, Liège B-4000, Belgium
| | - Maximilien Fléron
- GIGA Proteomics Facility, University of Liège, Liège B-4000, Belgium
| | | | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege B-4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, University of Liège, Liège B-4000, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege B-4000, Belgium
- GIGA Proteomics Facility, University of Liège, Liège B-4000, Belgium
| |
Collapse
|
2
|
Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in Single-Cell Proteomics and Mass Spectrometry-Based Techniques for Unmasking Cellular Diversity in Triple Negative Breast Cancer. Proteomics Clin Appl 2025; 19:e202400101. [PMID: 39568435 PMCID: PMC11726282 DOI: 10.1002/prca.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer characterized by a lack of targeted treatment options. Intratumoral heterogeneity significantly drives disease progression and complicates therapeutic responses, necessitating advanced analytical approaches to understand its underlying biology. This review aims to explore the advancements in single-cell proteomics and their application in uncovering cellular diversity in TNBC. It highlights innovations in sample preparation, mass spectrometry-based techniques, and the potential for integrating proteomics into multi-omics platforms. METHODS The review discusses the combination of improved sample preparation methods and cutting-edge mass spectrometry techniques in single-cell proteomics. It emphasizes the challenges associated with protein analysis, such as the inability to amplify proteins akin to transcripts, and examines strategies to overcome these limitations. RESULTS Single-cell proteomics provides a direct link to phenotype and cell behavior, complementing transcriptomic approaches and offering new insights into the mechanisms driving TNBC. The integration of advanced techniques has enabled deeper exploration of cellular heterogeneity and disease mechanisms. CONCLUSION Despite the challenges, single-cell proteomics holds immense potential to evolve into a high-throughput and scalable multi-omics platform. Addressing existing hurdles will enable deeper biological insights, ultimately enhancing the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Aarika Kanukolanu
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Madhuri Yeduvaka
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
3
|
Tan YC, Low TY, Lee PY, Lim LC. Single-cell proteomics by mass spectrometry: Advances and implications in cancer research. Proteomics 2024; 24:e2300210. [PMID: 38727198 DOI: 10.1002/pmic.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
Cancer harbours extensive proteomic heterogeneity. Inspired by the prior success of single-cell RNA sequencing (scRNA-seq) in characterizing minute transcriptomics heterogeneity in cancer, researchers are now actively searching for information regarding the proteomics counterpart. Therefore recently, single-cell proteomics by mass spectrometry (SCP) has rapidly developed into state-of-the-art technology to cater the need. This review aims to summarize application of SCP in cancer research, while revealing current development progress of SCP technology. The review also aims to contribute ideas into research gaps and future directions, ultimately promoting the application of SCP in cancer research.
Collapse
Affiliation(s)
- Yong Chiang Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yang Z, Jin K, Chen Y, Liu Q, Chen H, Hu S, Wang Y, Pan Z, Feng F, Shi M, Xie H, Ma H, Zhou H. AM-DMF-SCP: Integrated Single-Cell Proteomics Analysis on an Active Matrix Digital Microfluidic Chip. JACS AU 2024; 4:1811-1823. [PMID: 38818059 PMCID: PMC11134390 DOI: 10.1021/jacsau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 06/01/2024]
Abstract
Single-cell proteomics offers unparalleled insights into cellular diversity and molecular mechanisms, enabling a deeper understanding of complex biological processes at the individual cell level. Here, we develop an integrated sample processing on an active-matrix digital microfluidic chip for single-cell proteomics (AM-DMF-SCP). Employing the AM-DMF-SCP approach and data-independent acquisition (DIA), we identify an average of 2258 protein groups in single HeLa cells within 15 min of the liquid chromatography gradient. We performed comparative analyses of three tumor cell lines: HeLa, A549, and HepG2, and machine learning was utilized to identify the unique features of these cell lines. Applying the AM-DMF-SCP to characterize the proteomes of a third-generation EGFR inhibitor, ASK120067-resistant cells (67R) and their parental NCI-H1975 cells, we observed a potential correlation between elevated VIM expression and 67R resistance, which is consistent with the findings from bulk sample analyses. These results suggest that AM-DMF-SCP is an automated, robust, and sensitive platform for single-cell proteomics and demonstrate the potential for providing valuable insights into cellular mechanisms.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Jin
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yimin Chen
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Hongxu Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyi Hu
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yuqiu Wang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Zilu Pan
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Feng
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mude Shi
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hua Xie
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanbin Ma
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hu Zhou
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou
Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Konno R, Ishikawa M, Nakajima D, Endo Y, Ohara O, Kawashima Y. Universal Pretreatment Development for Low-input Proteomics Using Lauryl Maltose Neopentyl Glycol. Mol Cell Proteomics 2024; 23:100745. [PMID: 38447790 PMCID: PMC10999711 DOI: 10.1016/j.mcpro.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.
Collapse
Affiliation(s)
- Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan; Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
6
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
7
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Descamps A, Van der Borght K, De Spiegeleer A, Wynendaele E, De Spiegeleer B. Peptidomics: LC-MS operational parameters do matter. J Pharm Biomed Anal 2023; 229:115348. [PMID: 36963248 DOI: 10.1016/j.jpba.2023.115348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
The sensitive and specific detection of peptides at low levels in biofluids is critical to increase the lab-to-human translation of peptidomic research. An interesting group of peptides with increasing evidence for involvement in human diseases are quorum sensing peptides. To obtain more reliable conclusions on peptide measurands in biofluids, a selection of often neglected parts of the analytical process using LC-MS were investigated, with novel approaches recommended for each part. Quorum sensing peptides were used as the main model-peptides. The peptidomic parts investigated and discussed here are: Our work addresses aQbD-approached solutions to these challenges, encompassing sample stabilization measures, a suitable peptide anti-adsorption tool, judicious choice of injection solvent versus gradient system and optimal duty cycle parameters. Our recommendations will improve the peptidomics bio-analytics of not only quorum sensing peptides, but can also be of value for other measurands at low concentrations.
Collapse
Affiliation(s)
- Amélie Descamps
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kevin Van der Borght
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Anton De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|