1
|
Chen M, Kang Q, Zhang A, Lin S, Chen Z. Circle Padlock-Mediated Catalytic Hairpin Assembly Cooperating Primer Exchange Reaction for Sensitive and Label-Free MicroRNA Detection. ACS OMEGA 2024; 9:51157-51162. [PMID: 39758628 PMCID: PMC11696746 DOI: 10.1021/acsomega.4c06859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
MicroRNAs (miRNAs), which play critical roles in regulating gene expression and cell functions, are recognized as potential biomarkers for various human diseases, including gastric ulcers. The reliable, specific, and sensitive detection of miRNA is highly recommended for the clinical diagnosis and therapy of different diseases. Herein, we depict a label-free and low-background fluorescent assay for the highly sensitive detection of miRNAs by coupling target miRNA-triggered cyclization of a padlock, circular padlock-mediated catalytic hairpin assembly (CHA), and primer exchange reaction (PER)-assisted signal generation. The padlock probe recognizes the target miRNA, forming a circular padlock that subsequently facilitates the CHA. The subsequent PER process generates substantial quantities of G-quadruplex sequences that rapidly combine with thioflavin T to create substantial fluorescence, thereby enabling the highly sensitive detection of the target miRNA. This method demonstrated significant potential for the early diagnosis of diseases such as gastric ulcers, as it could conclude the detection process in human serum samples within hours.
Collapse
Affiliation(s)
- Meiyan Chen
- Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China
| | - Qiongdan Kang
- Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China
| | - Annan Zhang
- Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China
| | - Shanti Lin
- Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China
| | - Zhangxing Chen
- Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China
| |
Collapse
|
2
|
Liu X, Bu S, Zhou H, Xu Y, Hao Z, Li Z, Wan J. Fluorescence biosensor to detect microRNAs via integrating DNA hairpins transition mediated strand displacement amplification with primer exchange reaction. Bioorg Med Chem Lett 2024; 106:129774. [PMID: 38688438 DOI: 10.1016/j.bmcl.2024.129774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Herein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM. By simply changing the DNA hairpin sequence, the constructed biosensor can be extended to analyze another miRNAs. Moreover, the biosensor has the feasibility of detecting miRNAs in real samples with satisfactory accuracy and reliability. Therefore, the fluorescent biosensor has great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Shengjun Bu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongyu Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yao Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhuo Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zehong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Jiayu Wan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
3
|
Zhang K, Li Y, Jiang S, Ju S. Catalytic Assembly of DNAzyme Integrates with Primer Exchange Reaction (CDiPER) for Highly Sensitive Detection of MicroRNA. ACS OMEGA 2024; 9:10897-10903. [PMID: 38463245 PMCID: PMC10918665 DOI: 10.1021/acsomega.3c10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
MicroRNAs (miRNAs) have significant regulatory functions in the modulation of gene expression, making them essential biomarkers for the diagnosis and prognosis of diseases. Nevertheless, the identification of miRNA poses significant difficulty in terms of its low abundance, necessitating sensitive and reliable approaches. Herein, we develop a simple approach, termed Catalytic assembly of DNAzyme integrates with Primer Exchange Reaction (CDiPER), for reliable and sensitive miRNA detection through the target recognition-triggered DNAzyme assembly and primer exchange reaction (PER) strategy. In this method, target miRNA can precisely bind with a specifically designed hairpin probe (H probe) to induce the conformation changes of the H probe, releasing DNAzyme sections to activate the PER process for signal amplification and fluorescence signal production. The established method displays a high dynamic range of over 6 orders of magnitude and a low detection limit of 312 aM. The created method has a number of unique advantages, such as (i) a better sensitivity than existing systems using PER for signal amplification as a result of its integration with the target recognition-triggered DNAzyme assembly and (ii) streamlined operating procedures. Further, the technology was used to detect the expression of miRNA in collected clinical samples from diabetes mellitus patients, revealing that miRNA was decreased in patients and demonstrating the significant clinical promise of the method.
Collapse
Affiliation(s)
- Kun Zhang
- Wound
Treatment Center, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
- Xinxiang
Key Laboratory on Healing Mechanism Research of Diabetic Foot Ulcer,
Xinxiang Central Hospital, The Fourth Clinical
College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Yan Li
- Gastrointestinal
Surgery Department, The First Affiliated
Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China
| | - Shengjie Jiang
- Wound
Treatment Center, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shang Ju
- Department
of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Luo M, Lan F, Li W, Chen S, Zhang L, Situ B, Li B, Liu C, Pan W, Gao Z, Zhang Y, Zheng L. Design strategies and advanced applications of primer exchange reactions in biosensing: A review. Anal Chim Acta 2023; 1283:341824. [PMID: 37977767 DOI: 10.1016/j.aca.2023.341824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/19/2023]
Abstract
Early disease diagnosis relies on the sensitive detection and imaging of biomarkers. Signal amplification is one of the most commonly used methods to improve detection sensitivity. Primer exchange reaction (PER) is a novel signal amplification technique that has garnered attention because of its simple and sensitive features. The classical PER involves a single catalytic hairpin, which enables the attachment of custom sequences to the primer chain, generating a long repeat sequence that can bind numerous signaling molecules and achieve powerful signal amplification. Currently, numerous PER-based signal amplification strategies are available that can improve detection sensitivity and promote the development of the signal amplification field. This review focuses on the mechanism of typical PER, the diversification of PER, and PER-based biosensors for various targets. Finally, the challenges and prospects of PER development are discussed.
Collapse
Affiliation(s)
- Min Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fei Lan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lifeng Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Bo Situ
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bo Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chunchen Liu
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weilun Pan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhuowei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|