1
|
Bajgai J, Jun M, Oh JH, Lee JH. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025; 292:127954. [PMID: 40120511 DOI: 10.1016/j.talanta.2025.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynaecological malignancies, primarily because of its typically asymptomatic early stages, which complicates early detection. Therefore, developing sensitive and appropriate biomarkers for efficient diagnosis of OC is urgently needed. Aptamers, short sequences of single-stranded DNA or RNA molecules, have become crucial in tumor diagnosis because of their high affinity for specific molecules produced by tumors. This ability allows aptamers to accurately detect OC, thus providing better survival rates and a reduced disease burden. Biosensors that combine recognition molecules and nanomaterials are essential in various fields, including disease diagnosis and health management. Molecular-specific field-effect transistor (FET) biosensors are particularly promising due to their rapid response times, ease of miniaturization, and high sensitivity in detecting OC. Aptamers, which are known for their stability and structural tunability, are increasingly being used as biological recognition units in FET biosensors, offering selective and high-affinity binding to target molecules that are ideal for medical diagnostics. This review explores the recent advancements in biosensors for OC detection, including FET biosensors with aptamer-functionalized nanomaterials for CA125 and HE4. Furthermore, this review provides an overview of the structure and sensing principles of these advanced biosensors, preparation methods and functionalization strategies that enhance their performance. Additionally, notable progress and potential of biosensors, including aptamer-functionalized FET biosensors for OC diagnosis have been summarized, emphasising their role and clinical validation in advancing medical diagnostics and improving patient outcomes through enhanced detection capabilities.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
| |
Collapse
|
2
|
He W, Cui J, Wang XY, Siu RHP, Tanner JA. Early-Stage Pancreatic Cancer Diagnosis: Serum Biomarkers and the Potential for Aptamer-Based Biosensors. Molecules 2025; 30:2012. [PMID: 40363817 PMCID: PMC12073606 DOI: 10.3390/molecules30092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Pancreatic cancer has a high mortality rate, and both the incidence and mortality are continuing to increase in many countries globally. The poor prognosis of pancreatic cancer is in part due to the challenges in early diagnosis. Improving early-stage pancreatic cancer diagnosis would improve survival outcomes. Aptamer-based biosensors provide an alternative technological approach for the analysis of serum biomarkers with several potential advantages. This review summarizes the major pancreatic cancer serum biomarkers, as well as discusses recent progress in biomarker exploration and aptasensor development. Here, we review both established and novel serum biomarkers identified recently, emphasizing their potential for early-stage pancreatic cancer diagnosis. We also propose strategies for further expanding multiplex biomarker panels beyond the established CA19-9 biomarker to enhance diagnostic performance. We discuss technological advancements in aptamer-based sensors for pancreatic cancer-related biomarkers over the last decade. Optical and electrochemical sensors are highlighted as two primary modalities in aptasensor design, each offering unique advantages. Finally, we propose steps towards clinical application using aptamer-based sensors with multiplexed biomarker detection for improved pancreatic cancer diagnostics.
Collapse
Affiliation(s)
- Weisi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Jingyu Cui
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Xue-Yan Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
3
|
Wang B, Xu Y, Li H, Song Z, Guan T, He Y. Synergistic Signal Amplification via Weak Value Amplification Effect and Sandwich Structure for Highly Sensitive and Specific Real-Time Detection of CA125. BIOSENSORS 2025; 15:268. [PMID: 40422007 DOI: 10.3390/bios15050268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025]
Abstract
Biomolecule detection is pivotal in disease diagnosis. In this study, we present a novel aptamer-antibody sandwich module integrated with an imaging weak measurement system to enhance the sensitivity and specificity of biomolecule detection. The feasibility of this approach is demonstrated using CA125. CA125 is a glycoprotein tumor marker widely used for ovarian cancer diagnosis and monitoring, with its level changes closely associated with disease progression. Given its clinical significance, developing highly sensitive and specific CA125 detection methods is crucial for precision medicine. The dual-recognition mechanism combines the high affinity of aptamers and the specificity of antibodies, significantly improving detection performance while utilizing antibodies for signal amplification. In the presence of CA125, the anti-CA125 aptamer immobilized on the chip surface captures the target, which is then specifically bound by the CA125 antibody, forming the aptamer-CA125-antibody complex. This interaction induces a change in the refractive index of the chip surface, which is detected by the imaging weak measurement system and ultimately manifested as a variation in light intensity in the resulting images. The method achieves the highly sensitive detection of CA125 in the 0.01 mU/mL range to 100 U/mL, with preliminary results showing a detection resolution of 3.98 μU/mL and high specificity against non-target proteins. Additionally, detecting CA125 in serum samples further validates the feasibility of the method's applicability in complex biological matrices. The proposed method offers significant advantages, including high sensitivity, high specificity, label-free, multiplexed detection, low cost, and real-time detection, making it a promising platform for bio-molecule detection with a wide range of applications.
Collapse
Affiliation(s)
- Bei Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Xu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Han Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zishuo Song
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tian Guan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
4
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Cui H, Xin X, Su J, Song S. Research Progress of Electrochemical Biosensors for Diseases Detection in China: A Review. BIOSENSORS 2025; 15:231. [PMID: 40277545 PMCID: PMC12024860 DOI: 10.3390/bios15040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Disease diagnosis is not only related to individual health but is also a crucial part of public health prevention. Electrochemical biosensors combine the high sensitivity of electrochemical methods with the inherent high selectivity of biological components, offering advantages such as excellent sensitivity, fast response time, and low cost. The generated electrical signals have a linear relationship with the target analyte, allowing for identification and concentration detection. This has become a very attractive technology. This review offers a summary of recent advancements in electrochemical biosensor research for disease diagnosis in China. It systematically categorizes and summarizes biosensors developed in China for detecting cancer, infectious diseases, inflammation, and neurodegenerative disorders. Additionally, the review delves into the fundamental working principles, classifications, materials, preparation techniques, and other critical aspects of electrochemical biosensors. Finally, it addresses the key challenges impeding the advancement of electrochemical biosensors in China and examines promising future directions for their development.
Collapse
Affiliation(s)
- Haoran Cui
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| | - Xianglin Xin
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| | - Jing Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Shiping Song
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China; (H.C.); (X.X.)
| |
Collapse
|
6
|
Abul Rub F, Moursy N, Alhedeithy N, Mohamed J, Ifthikar Z, Elahi MA, Mir TA, Rehman MU, Tariq S, Alabudahash M, Chinnappan R, Yaqinuddin A. Modern Emerging Biosensing Methodologies for the Early Diagnosis and Screening of Ovarian Cancer. BIOSENSORS 2025; 15:203. [PMID: 40277517 PMCID: PMC12024575 DOI: 10.3390/bios15040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynecological cancer-related death worldwide. Late diagnosis at advanced stages of OC is the reason for a higher mortality rate. Earlier diagnosis and proper treatment are important for improving the prognosis of OC patients. Biosensors offer accurate, low-cost, rapid, and user-friendly devices that can be employed for the detection of OC-specific biomarkers in the early stage. Therefore, it is important to consider the potential biomarkers in the biological fluids to confirm the OC prognosis. Out of many biomarkers, the most commonly tested clinically is cancer antigen 125 (CA-125). However, CA-125 is considered to be a poor biomarker for OC diagnosis. Several biosensing methods were developed for the sensitive and quantitative detection of each biomarker. In abnormal expression in OC patients, nucleic acids, enzymes, cells, and exosomes are used as target biomarkers for the construction of biosensors. This review focuses on the development for the detection of various biomarkers using multiple biosensing methods. Here, we describe the origin and the significance of OC-associated biomarkers, the working principle of biosensors, and the classification of biosensors based on their recognition elements and signal transducers. The modes of detection and sensitivity of the sensors are discussed. Finally, the challenges in the fabrication, obstacles in the clinical application, and future prospects are discussed.
Collapse
Affiliation(s)
- Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Naseel Moursy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Nouf Alhedeithy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Juraij Mohamed
- Faculty of Medicine, University of Colombo, Colombo 00800, Sri Lanka;
| | - Zainab Ifthikar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Tanveer Ahmed Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Mati Ur Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan;
| | - Saima Tariq
- Department of Obstetrics and Gynecology, Al Iman General Hospital, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | - Mubark Alabudahash
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Glasgow G4 0RE, UK;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| |
Collapse
|
7
|
El-Gammal MA, Sayed FE, Allam NK. Comprehensive analysis of electrochemical biosensors for early ovarian cancer detection. RSC Adv 2024; 14:37580-37597. [PMID: 39588243 PMCID: PMC11587864 DOI: 10.1039/d4ra05972g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Ovarian cancer is one of the leading causes of mortality among women worldwide. However, early detection can significantly reduce mortality rates and mitigate subsequent complications related to both economic burden and mental well-being. Despite the development in the field of medical diagnosis, the death rates due to ovarian cancer have sharply increased. Among the recent technologies suggested as suitable diagnostic techniques for the early detection of ovarian cancer, biosensor technology has emerged as a cutting-edge technology, with electrochemical biosensors providing one of the most efficient types of biosensors. Therefore, this review discusses the application of electrochemical biosensors as a viable alternative to conventional diagnostic techniques for the timely identification of ovarian cancer, its advantages over other types of biosensors and conventional diagnostic techniques, and the types of electrochemical biosensors.
Collapse
Affiliation(s)
- Marwa A El-Gammal
- Energy Materials Laboratory, Physics Department, School of Sciences and Enginnering, The American University in Cairo New Cairo 11835 Egypt
| | - Fatma E Sayed
- Biotechnology program, Faculty of Agriculture, Ain Shams University Cairo 11566 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, Physics Department, School of Sciences and Enginnering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
8
|
Mei X, Zeng Z, Xu W, Yang H, Zheng Y, Gao H, Wu C, Zheng Y, Xu Q, Wang G, Xu Y, Wu A. Sandwich-type electrochemical immunosensing of CA125 by using nanoribbon-like Ti 3C 2T x MXenes and toluidine blue/UIO-66-NH 2. ANAL SCI 2024; 40:1081-1087. [PMID: 38578575 DOI: 10.1007/s44211-024-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
CA125 (carbohydrate antigen 125) is an important biomarker of ovarian cancer, so developing effective method for its detection is of great significance. In the present work, a novel sandwich-like electrochemical immunosensor (STEM) of CA125 was constructed by preparing nanoribbon-like Ti3C2Tx MXenes (Ti3C2TxNR) to immobilize primary antibody (PAb) of CA125 and UIO-66-NH2 MOFs structure to immobilize second antibody (SAb) and electroactive toluidine blue (Tb) probe. In this designed STEM assay, the as-prepared Ti3C2TxNR nanohybrid offers the advantages in large surface area and conductivity as carrier, and UIO-66-NH2 provided an ideal platform to accommodate SAb and a large number of Tb molecules as signal amplifier. In the presence of CA125, the peak currents of Tb from the formed STEM structure increase with the increase of CA125 level. After optimizing the related control conditions, a wide linear range (0.2-150.0 U mL-1) and a very low detection limit (0.05 U mL-1) of CA125 were achieved. It's thus expected the developed STEM strategy has important applications for the detection of CA125.
Collapse
Affiliation(s)
- Xuqiao Mei
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Zhenhua Zeng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Wenxin Xu
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Huicong Yang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuanhai Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Haimin Gao
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Chuncai Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanping Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Qiaoli Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Guowei Wang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuhuang Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ayang Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
9
|
Cetinkaya A, Kaya SI, Budak F, Ozkan SA. Current Analytical Methods for the Sensitive Assay of New-Generation Ovarian Cancer Drugs in Pharmaceutical and Biological Samples. Crit Rev Anal Chem 2024:1-17. [PMID: 38630637 DOI: 10.1080/10408347.2024.2339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|