1
|
Xu L, Cai M. Tacrolimus Maintains the Balance of Neutrophil Extracellular Traps by Inducing DNA Methylation of Neutrophils to Reduce Immune Rejection. Life (Basel) 2023; 13:2253. [PMID: 38137854 PMCID: PMC10744459 DOI: 10.3390/life13122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Immune rejection is a significant concern in organ transplantation, as it can lead to damage to and failure of the transplanted organ. To prevent or treat immune rejection, transplant recipients are commonly administered immunosuppressive drugs. Tacrolimus (FK506) is a widely used immunosuppressive drug in organ transplantation. The excessive formation of neutrophil extracellular traps (NETs) can contribute to inflammation and tissue damage. Although NETs play an antimicrobial role, their overproduction can be harmful. To investigate the mechanism by which FK506 suppresses immune rejection, we utilized HL-60 cells, which were differentiated into neutrophils using DMSO and induced to form NETs with phorbol myristate acetate (PMA), a very efficient and frequently used drug for inducing NET formation. By comparing pre- and post-treatment with FK506, we examined whether FK506 affects the formation of NETs. Various experimental techniques were employed, including confocal imaging for visualizing cell NETs, qPCR and Western blotting for gene and protein expression analyses, ELISAs for protein content detection, and LC-MS/MS for methylation detection. In our study, we discovered that FK506 can enhance DNA methylation, which likely contributes to the reduction in NETs. Genes and proteins related to methylation, namely, DNMT3B and TET3, exhibited significant correlations with methylation. Consistent changes in both genes and proteins suggest that DNMT3B and TET3 are key factors that are influenced by FK506, resulting in enhanced DNA methylation and the potential inhibition of PMA-induced NET production. In summary, we have identified a novel mechanism by which FK506 inhibits NET production through the enhancement of DNA methylation. This finding highlights a new aspect of FK506's immunosuppressive effect. Our results provide valuable insights for clinical research, immunosuppression, and organ preservation strategies.
Collapse
Affiliation(s)
| | - Ming Cai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China;
| |
Collapse
|
2
|
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103:121-136. [PMID: 28007541 PMCID: PMC5778886 DOI: 10.1016/j.yjmcc.2016.12.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago,Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chie, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
3
|
Binkhathlan Z, Badran MM, Alomrani A, Aljuffali IA, Alghonaim M, Al-Muhsen S, Halwani R, Alshamsan A. Reutilization of Tacrolimus Extracted from Expired Prograf® Capsules: Physical, Chemical, and Pharmacological Assessment. AAPS PharmSciTech 2016; 17:978-87. [PMID: 26729529 DOI: 10.1208/s12249-015-0433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated whether tacrolimus extracted and purified from the commercial capsules (Prograf® 5 mg) have retained its original quality and activity beyond the capsules expiration date in order to be reused for research purposes after extraction. High-performance liquid chromatography (HPLC) assay method was developed and validated for the quantification of tacrolimus, using cyclosporine A as an internal standard (IS). Moreover, a combination of analytical methods, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to assess the quality of extracted/purified tacrolimus. Suppression of murine peripheral-blood mononuclear cells (PBMC) proliferation and the levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) were also assessed. The data obtained showed no detectable differences in the quality profile between the authentic sample and extracted drug. Also, the results showed that the extracted/purified tacrolimus was able to suppress T cell proliferation, induced by concanavalin A, indicating the retained pharmacological activity. We proved that tacrolimus extracted/purified from expired Prograf® capsuled retains its purity and immunosuppressive activity and can be reused for research and possibly in pharmaceutical manufacturing.
Collapse
|
4
|
Cooperative autoinhibition and multi-level activation mechanisms of calcineurin. Cell Res 2016; 26:336-49. [PMID: 26794871 DOI: 10.1038/cr.2016.14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/12/2015] [Accepted: 11/27/2015] [Indexed: 11/08/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN), a heterodimer composed of a catalytic subunit A and an essential regulatory subunit B, plays critical functions in various cellular processes such as cardiac hypertrophy and T cell activation. It is the target of the most widely used immunosuppressants for transplantation, tacrolimus (FK506) and cyclosporin A. However, the structure of a large part of the CNA regulatory region remains to be determined, and there has been considerable debate concerning the regulation of CN activity. Here, we report the crystal structure of full-length CN (β isoform), which revealed a novel autoinhibitory segment (AIS) in addition to the well-known autoinhibitory domain (AID). The AIS nestles in a hydrophobic intersubunit groove, which overlaps the recognition site for substrates and immunosuppressant-immunophilin complexes. Indeed, disruption of this AIS interaction results in partial stimulation of CN activity. More importantly, our biochemical studies demonstrate that calmodulin does not remove AID from the active site, but only regulates the orientation of AID with respect to the catalytic core, causing incomplete activation of CN. Our findings challenge the current model for CN activation, and provide a better understanding of molecular mechanisms of CN activity regulation.
Collapse
|
5
|
Abstract
Abstract
BACKGROUND
The Ca2+-dependent protein phosphatase enzyme calcineurin (Cn) (protein phosphatase 3) is best known for its role as director of the adaptive immune response. One of its principal substrates is the nuclear factor of activated T cells (NFAT), which translocates to the nucleus after dephosphorylation to mediate gene transcription. Drugs targeting Cn (the Cn inhibitors tacrolimus and cyclosporin A) have revolutionized posttransplantation therapy in allograft recipients by considerably reducing rejection rates.
CONTENT
Owing primarily to intensive study of the side effects of the Cn inhibitors, the unique importance of Cn and Cn/NFAT signaling in the normal physiological processes of many other cell and tissue types is becoming more evident. During the last decade, it has become clear that an extensive and diverse array of clinical conditions can be traced back, at least in part, to a disturbed Cn-signaling axis. Hence, both diagnostics and therapeutic monitoring could benefit from a technique that conveniently reads out Cn/NFAT operative status.
SUMMARY
This review outlines the current knowledge on the pathologic conditions that have calcineurin as a common denominator and reports on the progress that has been made toward successfully applying Cn and Cn/NFAT activity markers in molecular diagnostics.
Collapse
Affiliation(s)
- Ruben E A Musson
- Departments of Clinical Chemistry and
- Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
6
|
Sieber M, Baumgrass R. Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506? Cell Commun Signal 2009; 7:25. [PMID: 19860902 PMCID: PMC2774854 DOI: 10.1186/1478-811x-7-25] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/27/2009] [Indexed: 01/16/2023] Open
Abstract
The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects.
Collapse
Affiliation(s)
- Matthias Sieber
- Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | |
Collapse
|
7
|
Rodríguez A, Roy J, Martínez-Martínez S, López-Maderuelo MD, Niño-Moreno P, Ortí L, Pantoja-Uceda D, Pineda-Lucena A, Cyert MS, Redondo JM. A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. Mol Cell 2009; 33:616-26. [PMID: 19285944 DOI: 10.1016/j.molcel.2009.01.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/29/2008] [Accepted: 01/13/2009] [Indexed: 11/15/2022]
Abstract
The phosphatase calcineurin, a target of the immunosuppressants cyclosporin A and FK506, dephosphorylates NFAT transcription factors to promote immune activation and development of the vascular and nervous systems. NFAT interacts with calcineurin through distinct binding motifs: the PxIxIT and LxVP sites. Although many calcineurin substrates contain PxIxIT motifs, the generality of LxVP-mediated interactions is unclear. We define critical residues in the LxVP motif, and we demonstrate its binding to a hydrophobic pocket at the interface of the two calcineurin subunits. Mutations in this region disrupt binding of mammalian calcineurin to NFATC1 and the interaction of yeast calcineurin with substrates including Rcn1, which contains an LxVP motif. These mutations also interfere with calcineurin-immunosuppressant binding, and an LxVP-based peptide competes with immunosuppressant-immunophilin complexes for binding to calcineurin. These studies suggest that LxVP-type sites are a common feature of calcineurin substrates, and that immunosuppressant-immunophilin complexes inhibit calcineurin by interfering with this mode of substrate recognition.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoekman JD, Tokheim AM, Spannaus-Martin DJ, Martin BL. Molecular modeling of the calmodulin binding region of calcineurin. Protein J 2007; 25:175-82. [PMID: 16705489 DOI: 10.1007/s10930-006-9000-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Homology module within Insight-II was used to model residues 374-420, sequences missing in the coordinates of resolved structure of the catalytic subunit of calcineurin. The modeling was done in two segments. The calmodulin binding region from residues 389 to 420 was modeled based on the structure of two other proteins having calmodulin binding domains with the same 1-8-14 structural motif as calcineurin. The link region (residues 374-389) between the calmodulin binding region and the solved core sequence was generated as a random loop and two residues at the C-terminal end of the sequence were added to the model using the EndRepair function within Homology. The model was refined using the Discover module of Insight-II with energy minimization. The Builder module was used to merge the modeled regions with the solved structure of calcineurin (residues 14-373). A final refinement step was done for the joined calcineurin model. From the model, it was predicted that the calmodulin and cyclophilin binding regions seem to be proximal. Biochemical experiments provided evidence that cyclosporin-A influenced calmodulin binding and activation of calcineurin consistent with overlapping binding regions.
Collapse
Affiliation(s)
- John D Hoekman
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street, S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
9
|
Hilgard P, Kahraman A, Lehmann N, Seltmann C, Beckebaum S, Ross RS, Baba HA, Malago M, Broelsch CE, Gerken G. Cyclosporine versus tacrolimus in patients with HCV infection after liver transplantation: Effects on virus replication and recurrent hepatitis. World J Gastroenterol 2006; 12:697-702. [PMID: 16521181 PMCID: PMC4066118 DOI: 10.3748/wjg.v12.i5.697] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effects of the calcineurin inhibitors, cyclosporine and tacrolimus, on hepatitis C virus (HCV) replication and activity of recurrent hepatitis C in patients post liver transplantation.
METHODS: The data of a cohort of 107 patients who received liver transplantation for HCV-associated liver cirrhosis between 1999 and 2003 in our center were retrospectively analyzed. The level of serum HCV-RNA and the activity of recurrent hepatitis were compared between 47 patients who received either cyclosporine or tacrolimus as the primary immunosuppressive agent and an otherwise similar immunosuppressive regimen which did not lead to biliary complications within the first 12 mo after transplantation.
RESULTS: HCV-RNA increased within 3 mo after transplantation but the differences between the cyclosporine group and the tacrolimus group were insignificant (P = 0.49 at 12 mo). In addition, recurrent hepatitis as determined by serum transaminases and histological grading of portal inflammation and fibrosis showed no significant difference after 12 mo (P = 0.34).
CONCLUSION: Cyclosporine or tacrolimus as a primary immunosuppressive agent does not influence the induction or severity of recurrent hepatitis in HCV-infected patients after liver transplantation.
Collapse
Affiliation(s)
- Philip Hilgard
- Department of Gastroenterology and Hepatology, University Hospital Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ozkanlar Y, Kijtawornrat A, Hamlin RL, Keene BW, Roche BM. Acute cardiovascular effects of tacrolimus in the isolated guinea pig heart. J Vet Pharmacol Ther 2005; 28:313-6. [PMID: 15953206 DOI: 10.1111/j.1365-2885.2005.00631.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y Ozkanlar
- Department of Veterinary Internal Medicine, Ataturk University, Ilica, Erzurum, Turkey
| | | | | | | | | |
Collapse
|