1
|
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJG. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. SCIENCE ADVANCES 2020; 6:eabb7258. [PMID: 32923644 PMCID: PMC7449678 DOI: 10.1126/sciadv.abb7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
Collapse
Affiliation(s)
- Courtney W. Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jennah E. Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, France
| | - Steffen L. Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, Netherlands
| | - Thijs J. G. Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
| |
Collapse
|
2
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
3
|
Dujeancourt L, Richter R, Chrzanowska-Lightowlers ZM, Bonnefoy N, Herbert CJ. Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria. Mitochondrion 2013; 13:871-80. [PMID: 23892058 PMCID: PMC3919214 DOI: 10.1016/j.mito.2013.07.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022]
Abstract
Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes. In S. pombe the peptidyl tRNA hydrolases Pth3 and Pth4 are mitochondrial proteins. Pth3 and Pth4 are associated with the mitochondrial ribosome and the large subunit. Deletion of pth4 and mrf1, encoding the mitochondrial release factor, is co-lethal. Over-expression of pth4 compensates for the deletion of mrf1. Pth4 can act as a release factor in S. pombe mitochondria.
Collapse
Affiliation(s)
- Laurent Dujeancourt
- Centre de Génétique Moléculaire, UPR3404, FRC3115, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
4
|
Abstract
Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis--the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell--has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it.
Collapse
|
5
|
|
6
|
Emelyanov VV, Goldberg AV. Fermentation enzymes of Giardia intestinalis, pyruvate:ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes. Microbiology (Reading) 2011; 157:1602-1611. [DOI: 10.1099/mic.0.044784-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is becoming increasingly clear that the so-called remnant organelles of microaerophilic unicellular eukaryotes, hydrogenosomes and mitosomes, are significantly reduced versions of mitochondria. They normally lack most of the classic mitochondrial attributes, such as an electron transport chain and a genome. While hydrogenosomes generate energy by substrate-level phosphorylation along a hydrogen-producing fermentation pathway, involving iron–sulfur-cluster-containing enzymes pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, whether mitosomes participate in ATP synthesis is currently unknown. Both enzymes were recently described in the mitosome-bearing diplomonad Giardia intestinalis, also shown to produce molecular hydrogen. As published data show that giardial PFO is a membrane-associated enzyme, it could be suspected that PFO and hydrogenase operate in the mitosome, in which case the latter would by definition be a hydrogenosome. Using antibodies against recombinant enzymes of G. intestinalis, it was shown by Western blot analysis of subcellular fractions and by confocal immunofluorescence microscopy of whole cells that neither PFO nor hydrogenase localize to the mitosome, but are mostly found in the cytosol. The giardial mitosome is known to play a role in iron–sulfur cluster assembly and to contain chaperones Cpn60 and mtHsp70, which assist, in particular, in protein import. In mitochondria, transmembrane potential is essential for this complex process. Using MitoTracker Red and organelle-specific antibodies, transmembrane potential could be detected in the Trichomonas vaginalis hydrogenosome, but not in the G. intestinalis mitosome. These results provide further evidence that the Giardia mitosome is one of the most highly reduced mitochondrial homologues.
Collapse
Affiliation(s)
- Victor V. Emelyanov
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alina V. Goldberg
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Pallen MJ. Time to recognise that mitochondria are bacteria? Trends Microbiol 2010; 19:58-64. [PMID: 21123072 DOI: 10.1016/j.tim.2010.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/19/2010] [Accepted: 11/02/2010] [Indexed: 01/16/2023]
Abstract
The scientific community is comfortable with recognising mitochondria as organelles that happen to be descendants of bacteria. Here, I playfully explore the arguments for and against a phylogenetic fundamentalism that states that mitochondria are bacteria and should be given their own taxonomic family, the Mitochondriaceae. I also explore the consequences of recognizing mitochondria as bacteria for our understanding of the systemic response to trauma and for the prospects of creating transgenic mitochondria.
Collapse
Affiliation(s)
- Mark J Pallen
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Ravin NV, Galachyants YP, Mardanov AV, Beletsky AV, Petrova DP, Sherbakova TA, Zakharova YR, Likhoshway YV, Skryabin KG, Grachev MA. Complete sequence of the mitochondrial genome of a diatom alga Synedra acus and comparative analysis of diatom mitochondrial genomes. Curr Genet 2010; 56:215-23. [PMID: 20309551 DOI: 10.1007/s00294-010-0293-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
The first two mitochondrial genomes of marine diatoms were previously reported for the centric Thalassiosira pseudonana and the raphid pennate Phaeodactylum tricornutum. As part of a genomic project, we sequenced the complete mitochondrial genome of the freshwater araphid pennate diatom Synedra acus. This 46,657 bp mtDNA encodes 2 rRNAs, 24 tRNAs, and 33 proteins. The mtDNA of S. acus contains three group II introns, two inserted into the cox1 gene and containing ORFs, and one inserted into the rnl gene and lacking an ORF. The compact gene organization contrasts with the presence of a 4.9-kb-long intergenic region, which contains repeat sequences. Comparison of the three sequenced mtDNAs showed that these three genomes carry similar gene pools, but the positions of some genes are rearranged. Phylogenetic analysis performed with a fragment of the cox1 gene of diatoms and other heterokonts produced a tree that is similar to that derived from 18S RNA genes. The introns of mtDNA in the diatoms seem to be polyphyletic. This study demonstrates that pyrosequencing is an efficient method for complete sequencing of mitochondrial genomes from diatoms, and may soon give valuable information about the molecular phylogeny of this outstanding group of unicellular organisms.
Collapse
|
9
|
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One 2010; 5:e8619. [PMID: 20062535 PMCID: PMC2797634 DOI: 10.1371/journal.pone.0008619] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.
Collapse
|
10
|
Huynen MA, de Hollander M, Szklarczyk R. Mitochondrial proteome evolution and genetic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1122-9. [DOI: 10.1016/j.bbadis.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/04/2009] [Accepted: 03/20/2009] [Indexed: 11/16/2022]
|
11
|
|
12
|
Emelyanov VV. Mitochondrial Porin VDAC 1 Seems to Be Functional in Rickettsial Cells. Ann N Y Acad Sci 2009; 1166:38-48. [DOI: 10.1111/j.1749-6632.2009.04513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Mozaffarieh M, Grieshaber M, Orgül S, Flammer J. The Potential Value of Natural Antioxidative Treatment in Glaucoma. Surv Ophthalmol 2008; 53:479-505. [DOI: 10.1016/j.survophthal.2008.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Esser C, Martin W, Dagan T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 2008; 3:180-4. [PMID: 17251118 PMCID: PMC2375920 DOI: 10.1098/rsbl.2006.0582] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biologists agree that the ancestor of mitochondria was an alpha-proteobacterium. But there is no consensus as to what constitutes an alpha-proteobacterial gene. Is it a gene found in all or several alpha-proteobacteria, or in only one? Here, we examine the proportion of alpha-proteobacterial genes in alpha-proteobacterial genomes by means of sequence comparisons. We find that each alpha-proteobacterium harbours a particular collection of genes and that, depending upon the lineage examined, between 97 and 33% are alpha-proteobacterial by the nearest-neighbour criterion. Our findings bear upon attempts to reconstruct the mitochondrial ancestor and upon inferences concerning the collection of genes that the mitochondrial ancestor possessed at the time that it became an endosymbiont.
Collapse
|
15
|
Complex I of Trypanosomatidae: does it exist? Trends Parasitol 2008; 24:310-7. [PMID: 18534909 DOI: 10.1016/j.pt.2008.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/11/2008] [Accepted: 03/11/2008] [Indexed: 12/31/2022]
Abstract
The presence of complex I, or NADH dehydrogenase, in Trypanosomatidae is debated. Several subunits of complex I have been identified by biochemical studies, but the overall composition of the complex has remained elusive. Here, the authors review the present literature related to this mitochondrial activity and carry out a bioinformatic analysis to allow the prediction of the composition of a putative trypanosomatid complex I. The complex comprises at least 19 subunits and has a minimum mass of 660 kDa. It is larger than the corresponding bacterial enzyme but smaller than the typical mitochondrial enzyme of eukaryotes. All subunits known to be involved in electron transport are present, but the complex does not seem to be involved in energy transduction because four membrane subunits, normally encoded by the mitochondrial genome and supposed to be involved in proton extrusion, are missing.
Collapse
|
16
|
Smith DG, Gawryluk RM, Spencer DF, Pearlman RE, Siu KM, Gray MW. Exploring the Mitochondrial Proteome of the Ciliate Protozoon Tetrahymena thermophila: Direct Analysis by Tandem Mass Spectrometry. J Mol Biol 2007; 374:837-63. [DOI: 10.1016/j.jmb.2007.09.051] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/27/2022]
|
17
|
|
18
|
Gupta RS. Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Crit Rev Microbiol 2005; 31:101-35. [PMID: 15986834 DOI: 10.1080/10408410590922393] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alpha (alpha) proteobacteria comprise a large and metabolically diverse group. No biochemical or molecular feature is presently known that can distinguish these bacteria from other groups. The evolutionary relationships among this group, which includes numerous pathogens and agriculturally important microbes, are also not understood. Shared conserved inserts and deletions (i.e., indels or signatures) in molecular sequences provide a powerful means for identification of different groups in clear terms, and for evolutionary studies (see www.bacterialphylogeny.com). This review describes, for the first time, a large number of conserved indels in broadly distributed proteins that are distinctive and unifying characteristics of either all alpha-proteobacteria, or many of its constituent subgroups (i.e., orders, families, etc.). These signatures were identified by systematic analyses of proteins found in the Rickettsia prowazekii (RP) genome. Conserved indels that are unique to alpha-proteobacteria are present in the following proteins: Cytochrome c oxidase assembly protein Ctag, PurC, DnaB, ATP synthase alpha-subunit, exonuclease VII, prolipoprotein phosphatidylglycerol transferase, RP-400, FtsK, puruvate phosphate dikinase, cytochrome b, MutY, and homoserine dehydrogenase. The signatures in succinyl-CoA synthetase, cytochrome oxidase I, alanyl-tRNA synthetase, and MutS proteins are found in all alpha-proteobacteria, except the Rickettsiales, indicating that this group has diverged prior to the introduction of these signatures. A number of proteins contain conserved indels that are specific for Rickettsiales (XerD integrase and leucine aminopeptidase), Rickettsiaceae (Mfd, ribosomal protein L19, FtsZ, Sigma 70 and exonuclease VII), or Anaplasmataceae (Tgt and RP-314), and they distinguish these groups from all others. Signatures in DnaA, RP-057, and DNA ligase A are commonly shared by various Rhizobiales, Rhodobacterales, and Caulobacter, suggesting that these groups shared a common ancestor exclusive of other alpha-proteobacteria. A specific relationship between Rhodobacterales and Caulobacter is indicated by a large insert in the Asn-Gln amidotransferase. The Rhizobiales group of species are distinguished from others by a large insert in the Trp-tRNA synthetase. Signature sequences in a number of other proteins (viz. oxoglutarate dehydogenase, succinyl-CoA synthase, LytB, DNA gyrase A, LepA, and Ser-tRNA synthetase) serve to distinguish the Rhizobiaceae, Brucellaceae, and Phyllobacteriaceae families from Bradyrhizobiaceae and Methylobacteriaceae. Based on the distribution patterns of these signatures, it is now possible to logically deduce a model for the branching order among alpha-proteobacteria, which is as follows: Rickettsiales --> Rhodospirillales-Sphingomonadales --> Rhodobacterales-Caulobacterales --> Rhizobiales (Rhizobiaceaea-Brucellaceae-Phyllobacteriaceae, and Bradyrhizobiaceae). The deduced branching order is also consistent with the topologies in the 16 rRNA and other phylogenetic trees. Signature sequences in a number of other proteins provide evidence that alpha-proteobacteria is a late branching taxa within Bacteria, which branched after the delta,epsilon-subdivisions but prior to the beta,gamma-proteobacteria. The shared presence of many of these signatures in the mitochondrial (eukaryotic) homologs also provides evidence of the alpha-proteobacterial ancestry of mitochondria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
Kainth P, Gupta RS. Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics 2005; 6:94. [PMID: 15960851 PMCID: PMC1182365 DOI: 10.1186/1471-2164-6-94] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 06/16/2005] [Indexed: 11/24/2022] Open
Abstract
Background The alpha (α) proteobacteria, a very large and diverse group, are presently characterized solely on the basis of 16S rRNA trees, with no known molecular characteristic that is unique to this group. The genomes of three α-proteobacteria, Rickettsia prowazekii (RP), Caulobacter crescentus (CC) and Bartonella quintana (BQ), were analyzed in order to search for proteins that are unique to this group. Results Blast analyses of protein sequences from the above genomes have led to the identification of 61 proteins which are distinctive characteristics of α-proteobacteria and are generally not found in any other bacteria. These α-proteobacterial signature proteins are generally of hypothetical functions and they can be classified as follows: (i) Six proteins (CC2102, CC3292, CC3319, CC1887, CC1725 and CC1365) which are uniquely present in most sequenced α-proteobacterial genomes; (ii) Ten proteins (CC1211, CC1886, CC2245, CC3470, CC0520, CC0365, CC0366, CC1977, CC3010 and CC0100) which are present in all α-proteobacteria except the Rickettsiales; (iii) Five proteins (CC2345, CC3115, CC3401, CC3467 and CC1021) not found in the intracellular bacteria belonging to the order Rickettsiales and the Bartonellaceae family; (iv) Four proteins (CC1652, CC2247, CC3295 and CC1035) that are absent from various Rickettsiales as well as Rhodobacterales; (v) Three proteins (RP104, RP105 and RP106) that are unique to the order Rickettsiales and four proteins (RP766, RP192, RP030 and RP187) which are specific for the Rickettsiaceae family; (vi) Six proteins (BQ00140, BQ00720, BQ03880, BQ12030, BQ07670 and BQ11900) which are specific to the order Rhizobiales; (vii) Four proteins (BQ01660, BQ02450, BQ03770 and BQ13470) which are specific for the order Rhizobiales excluding the family Bradyrhizobiaceae; (viii) Nine proteins (BQ12190, BQ11460, BQ11450, BQ11430, BQ11380, BQ11160, BQ11120, BQ11100 and BQ11030 which are distinctive of the Bartonellaceae family;(ix) Six proteins (CC0189, CC0569, CC0331, CC0349, CC2323 and CC2637) which show sporadic distribution in α-proteobacteria, (x) Four proteins (CC2585, CC0226, CC2790 and RP382) in which lateral gene transfers are indicated to have occurred between α-proteobacteria and a limited number of other bacteria. Conclusion The identified proteins provide novel means for defining and identifying the α-proteobacteria and many of its subgroups in clear molecular terms and in understanding the evolution of this group of species. These signature proteins, together with the large number of α-proteobacteria specific indels that have recently been identified , provide evidence that all species from this diverse group share many unifying and distinctive characteristics. Functional studies on these proteins should prove very helpful in the identification of such characteristics.
Collapse
Affiliation(s)
- Pinay Kainth
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, L8N 3Z5, Canada
| |
Collapse
|
20
|
Gabaldón T, Rainey D, Huynen MA. Tracing the Evolution of a Large Protein Complex in the Eukaryotes, NADH:Ubiquinone Oxidoreductase (Complex I). J Mol Biol 2005; 348:857-70. [PMID: 15843018 DOI: 10.1016/j.jmb.2005.02.067] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The increasing availability of sequenced genomes enables the reconstruction of the evolutionary history of large protein complexes. Here, we trace the evolution of NADH:ubiquinone oxidoreductase (Complex I), which has increased in size, by so-called supernumary subunits, from 14 subunits in the bacteria to 30 in the plants and algae, 37 in the fungi and 46 in the mammals. Using a combination of pair-wise and profile-based sequence comparisons at the levels of proteins and the DNA of the sequenced eukaryotic genomes, combined with phylogenetic analyses to establish orthology relationships, we were able to (1) trace the origin of six of the supernumerary subunits to the alpha-proteobacterial ancestor of the mitochondria, (2) detect previously unidentified homology relations between subunits from fungi and mammals, (3) detect previously unidentified subunits in the genomes of several species and (4) document several cases of gene duplications among supernumerary subunits in the eukaryotes. One of these, a duplication of N7BM (B17.2), is particularly interesting as it has been lost from genomes that have also lost Complex I proteins, making it a candidate for a Complex I interacting protein. A parsimonious reconstruction of eukaryotic Complex I evolution shows an initial increase in size that predates the separation of plants, fungi and metazoa, followed by a gradual adding and incidental losses of subunits in the various evolutionary lineages. This evolutionary scenario is in contrast to that for Complex I in the prokaryotes, for which the combination of several separate, and previously independently functioning modules into a single complex has been proposed.
Collapse
Affiliation(s)
- Toni Gabaldón
- Center for Molecular and Biomolecular Informatics and Nijmegen Center for Molecular Life Sciences, University Medical Center St. Radboud, Toernoooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
21
|
Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SGE. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A 2004; 101:9722-7. [PMID: 15210995 PMCID: PMC470742 DOI: 10.1073/pnas.0400975101] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Indexed: 11/18/2022] Open
Abstract
The alpha-proteobacteria, from which mitochondria are thought to have originated, display a 10-fold genome size variation and provide an excellent model system for studies of genome size evolution in bacteria. Here, we use computational approaches to infer ancestral gene sets and to quantify the flux of genes along the branches of the alpha-proteobacterial species tree. Our study reveals massive gene expansions at branches diversifying plant-associated bacteria and extreme losses at branches separating intracellular bacteria of animals and humans. Alterations in gene numbers have mostly affected functional categories associated with regulation, transport, and small-molecule metabolism, many of which are encoded by paralogous gene families located on auxiliary chromosomes. The results suggest that the alpha-proteobacterial ancestor contained 3,000-5,000 genes and was a free-living, aerobic, and motile bacterium with pili and surface proteins for host cell and environmental interactions. Approximately one third of the ancestral gene set has no homologs among the eukaryotes. More than 40% of the genes without eukaryotic counterparts encode proteins that are conserved among the alpha-proteobacteria but for which no function has yet been identified. These genes that never made it into the eukaryotes but are widely distributed in bacteria may represent bacterial drug targets and should be prime candidates for future functional characterization.
Collapse
Affiliation(s)
- Bastien Boussau
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, S-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|