1
|
Bracun L, Yamagata A, Christianson BM, Shirouzu M, Liu LN. Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus. Structure 2023; 31:318-328.e3. [PMID: 36738736 DOI: 10.1016/j.str.2023.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
In purple photosynthetic bacteria, the photochemical reaction center (RC) and light-harvesting complex 1 (LH1) assemble to form monomeric or dimeric RC-LH1 membrane complexes, essential for bacterial photosynthesis. Here, we report a 2.59-Å resolution cryoelectron microscopy (cryo-EM) structure of the RC-LH1 supercomplex from Rhodobacter capsulatus. We show that Rba. capsulatus RC-LH1 complexes are exclusively monomers in which the RC is surrounded by a 15-subunit LH1 ring. Incorporation of a transmembrane polypeptide PufX leads to a large opening within the LH1 ring. Each LH1 subunit associates two carotenoids and two bacteriochlorophylls, which is similar to Rba. sphaeroides RC-LH1 but more than one carotenoid per LH1 in Rba. veldkampii RC-LH1 monomer. Collectively, the unique Rba. capsulatus RC-LH1-PufX represents an intermediate structure between Rba. sphaeroides and Rba. veldkampii RC-LH1-PufX. Comparison of PufX from the three Rhodobacter species indicates the important residues involved in dimerization of RC-LH1.
Collapse
Affiliation(s)
- Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bern M Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Liu S, Daigger GT, Kang J, Zhang G. Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseudomonas palustris in a photobioreactor system. BIORESOURCE TECHNOLOGY 2019; 294:122172. [PMID: 31606599 DOI: 10.1016/j.biortech.2019.122172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Light intensity and photoperiod significantly affect Rhodopseudomonas palustris growth and pigments production and their optimization is necessary for pigment biosynthesis. In this study, the impacts of different light intensity and light/dark cycles were investigated on biomass, carotenoids, bacteriochlorophyll production, together with pollutant removal, in a photobioreactor system. Results showed that R. palustris had the highest carotenoids and bacteriochlorophyll productions with light intensity of 150 μmol-photons/m2/s and light/dark cycle of 4/2 (16 h/8h). The corresponding values were 1.94 mg/g-biomass and 1.17 mg/g-biomass, respectively. The effects of light/dark cycle on crtA and bchE gene expression in pigments biosynthesis were also studied. Mechanism analysis revealed that carotenoids and bacteriochlorophyll yields represented good synergistic effect, which was consistent with the up-regulation of crtA and bchE gene expressions under optimal light/dark cycle of 4/2.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Liu S, Zhang G, Zhang J, Li X, Li J. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). BIORESOURCE TECHNOLOGY 2016; 200:245-252. [PMID: 26496213 DOI: 10.1016/j.biortech.2015.10.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield.
Collapse
Affiliation(s)
- Shuli Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Resource, Renmin University of China, Beijing 100872, China.
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Liu S, Li X, Zhang G, Zhang J. Effect of magnesium ion on crt gene expression in improving carotenoid yield of Rhodobacter sphaeroides. Arch Microbiol 2015; 197:1101-8. [PMID: 26371061 DOI: 10.1007/s00203-015-1150-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/30/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
This study aimed at increasing carotenoid yield of Rhodobacter sphaeroides in wastewater treatment by adding magnesium ion (Mg(2+)). Results showed that Mg(2+) could improve R. sphaeroides biomass and carotenoid yield effectively. The highest carotenoid yield of 4.83 ± 0.14 mg/g biomass and biomass production of 3900 ± 180 mg/L were achieved at optimal Mg(2+) concentration of 15 mmol/L. Mechanism analysis revealed that Mg(2+) could promote carotenoid production by regulating the expressions of crt genes. Up-regulation of crtBDA genes improved carotenoid biosynthesis of R. sphaeroides.
Collapse
Affiliation(s)
- Shuli Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China.
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China.
| | - Guangming Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China. .,School of Environment and Resource, Renmin University of China, Beijing, 100872, China.
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China.
| |
Collapse
|
5
|
Liu S, Zhang G, Li X, Wu P, Zhang J. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. J Environ Sci (China) 2015; 33:21-28. [PMID: 26141874 DOI: 10.1016/j.jes.2015.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL (about 6.4×10(5) CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity.
Collapse
Affiliation(s)
- Shuli Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China..
| | - Guangming Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.; School of Environment and Resource, Renmin University of China, Beijing 100872, China.
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Pan Wu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
D'Haene SE, Crouch LI, Jones MR, Frese RN. Organization in photosynthetic membranes of purple bacteria in vivo: the role of carotenoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1665-73. [PMID: 25017691 DOI: 10.1016/j.bbabio.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Photosynthesis in purple bacteria is performed by pigment-protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC-LH1 pigment-protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC-LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC-LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC-LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC-LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC-LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC-LH1 complex were very high, and in the absence of LH2, LD and ∆LD spectra from intact cells indicated an ordered arrangement of RC-LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.
Collapse
Affiliation(s)
- Sandrine E D'Haene
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Lucy I Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Raoul N Frese
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
7
|
Ng IW, Adams PG, Mothersole DJ, Vasilev C, Martin EC, Lang HP, Tucker JD, Neil Hunter C. Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1056-63. [PMID: 21651888 DOI: 10.1016/j.bbabio.2011.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/23/2011] [Indexed: 02/02/2023]
Abstract
Carotenoids play important roles in photosynthesis where they are involved in light-harvesting, in photo-protection and in the assembly and structural stability of light-harvesting and reaction centre complexes. In order to examine the effects of carotenoids on the oligomeric state of the reaction centre-light-harvesting 1 -PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides two carotenoid-less mutants, TC70 and R-26, were studied. Detergent fractionation showed that in the absence of carotenoids LH2 complexes do not assemble, as expected, but also that core complexes are predominantly found as monomers, although levels of the PufX polypeptide appeared to be unaffected. Analysis of R-26 membranes by electron microscopy and atomic force microscopy reveals arrays of hexagonally packed monomeric RC-LH1-PufX complexes. Transfer of the crtB gene encoding phytoene synthase to TC70 and R-26 restores the normal synthesis of carotenoids demonstrating that the R-26 mutant of Rba. sphaeroides harbours a mutation in crtB, among its other defects. The transconjugant TC70 and R-26 strains containing crtB had regained their ability to assemble wild-type levels of dimeric RC-LH1-PufX core complexes and normal energy transfer pathways were restored, demonstrating that carotenoids are essential for the normal assembly and function of both the LH2 and RC-LH1-PufX complexes in this bacterial photosystem.
Collapse
Affiliation(s)
- Irene W Ng
- Department of Molecular Biology and Biochemistry, University of Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Crouch LI, Holden-Dye K, Jones MR. Dimerisation of the Rhodobacter sphaeroides RC-LH1 photosynthetic complex is not facilitated by a GxxxG motif in the PufX polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1812-9. [PMID: 20646993 DOI: 10.1016/j.bbabio.2010.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/24/2022]
Abstract
In purple photosynthetic bacteria the initial steps of light energy transduction take place in an RC-LH1 complex formed by the photochemical reaction centre (RC) and the LH1 light harvesting pigment-protein. In Rhodobacter sphaeroides, the RC-LH1 complex assembles in a dimeric form in which two RCs are surrounded by an S-shaped LH1 antenna. There is currently debate over the detailed architecture of this dimeric RC-LH1 complex, with particular emphasis on the location and precise function of a minor polypeptide component termed PufX. It has been hypothesised that the membrane-spanning helical region of PufX contains a GxxxG dimerisation motif that facilitates the formation of a dimer of PufX at the interface of the RC-LH1 dimer, and more specifically that the formation of this PufX dimer seeds assembly of the remaining RC-LH1 dimer (J. Busselez et al., 2007). In the present work this hypothesis was tested by site directed mutagenesis of the glycine residues proposed to form the GxxxG motif. Mutation of these glycines to leucine did not decrease the propensity of the RC-LH1 complex to assemble in a dimeric form, as would be expected from experimental studies of the effect of mutation on GxxxG motifs in other membrane proteins. Indeed increased yields of dimer were seen in two of the glycine-to-leucine mutants constructed. It is concluded that the PufX from Rhodobacter sphaeroides does not contain a genuine GxxxG helix dimerisation motif.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
9
|
Uyeda G, Williams JC, Roman M, Mattioli TA, Allen JP. The Influence of Hydrogen Bonds on the Electronic Structure of Light-Harvesting Complexes from Photosynthetic Bacteria. Biochemistry 2010; 49:1146-59. [DOI: 10.1021/bi901247h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Uyeda
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - J. C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - M. Roman
- Service de Bioénergétique, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - T. A. Mattioli
- Service de Bioénergétique, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - J. P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
10
|
Şener M, Hsin J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. Chem Phys 2009; 357:188-197. [PMID: 20161332 PMCID: PMC2678753 DOI: 10.1016/j.chemphys.2009.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The light-harvesting apparatus of the purple bacterial photosynthetic unit consists of a pool of peripheral light-harvesting complexes that transfer excitation energy to a reaction center (RC) via the surrounding pigment-protein complex LH1. Recent electron microscopy and atomic force microscopy studies have revealed that RC-LH1 units of Rhodobacter sphaeroides form membrane-bending dimeric complexes together with the polypeptide PufX. We present a structural model for these RC-LH1-PufX dimeric complexes constructed using the molecular dynamics flexible fitting method based on an EM density map. The arrangement of the LH1 BChls displays a distortion near the proposed location of the PufX polypeptide. The resulting atomic model for BChl arrays is used to compute the excitonic properties of the dimeric RC-LH1 complex. A comparison is presented between the structural and excitonic features of the S-shaped dimeric BChl array of Rhodobacter sphaeroides and the circular BChl arrangement found in other purple bacteria.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jen Hsin
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Leonardo G. Trabuco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elizabeth Villa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
11
|
|
12
|
Holden-Dye K, Crouch LI, Jones MR. Structure, function and interactions of the PufX protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:613-30. [DOI: 10.1016/j.bbabio.2008.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/06/2008] [Accepted: 04/10/2008] [Indexed: 11/26/2022]
|
13
|
Tunnicliffe RB, Ratcliffe EC, Hunter CN, Williamson MP. The solution structure of the PufX polypeptide from Rhodobacter sphaeroides. FEBS Lett 2006; 580:6967-71. [PMID: 17161397 DOI: 10.1016/j.febslet.2006.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/16/2006] [Accepted: 11/24/2006] [Indexed: 11/29/2022]
Abstract
PufX organizes the photosynthetic reaction centre-light harvesting complex 1 (RC-LH1) core complex of Rhodobacter sphaeroides and facilitates quinol/quinone exchange between the RC and cytochrome bc(1) complexes. The structure of PufX in organic solvent reveals two hydrophobic helices flanked by unstructured termini and connected by a helical bend. The proposed location of basic residues and tryptophans at the membrane interface orients the C-terminal helix along the membrane normal, with the GXXXG motifs in positions unsuitable as direct drivers of dimerisation of the RC-LH1 complex. The N-terminal helix is predicted to extend approximately 40 Anggstrom along the membrane interface.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
14
|
Aklujkar M, Prince RC, Beatty JT. The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Arch Biochem Biophys 2006; 454:59-71. [PMID: 16949540 DOI: 10.1016/j.abb.2006.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/30/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Optimal photosynthetic reaction centre (RC) and core antenna (LH1) levels in the purple bacterium Rhodobacter capsulatus require the puhC gene. Deletion of puhC had little effect on RC and LH1 assembly individually, but significantly inhibited the photosynthetic growth of RC+ LH1- strains, suggesting that maximal RC catalytic activity is PuhC-dependent. Consistent with post-assembly reorganization of the RC/LH1/PufX core complex by PuhC to include latecomer proteins, spatial separation of pufX from the RC/LH1 genes inhibited PufX accumulation and photosynthetic growth only in PuhC- strains. Photosynthetic activity improved to different degrees when PuhC homologues from three other species were expressed in PuhC- R. capsulatus, indicating that PuhC homologues function similarly but may interact inefficiently with a heterologous core complex. Anaerobic photosynthetic growth of PuhC- strains was affected by the duration of prior semiaerobic growth, and by two genes that modulate bacteriochlorophyll production: pufQ and puhE. These observations agree with a speculative model in which reorganization of the core complex is an important regenerative process, accelerated by PuhC.
Collapse
Affiliation(s)
- Muktak Aklujkar
- Department of Microbiology and Immunology, University of British Columbia, 4556 - 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | | | |
Collapse
|
15
|
Jones MR. Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 2006; 46:56-87. [PMID: 16963124 DOI: 10.1016/j.plipres.2006.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 12/19/2022]
Abstract
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
16
|
Aklujkar M, Beatty JT. Investigation of Rhodobacter capsulatus PufX interactions in the core complex of the photosynthetic apparatus. PHOTOSYNTHESIS RESEARCH 2006; 88:159-71. [PMID: 16622783 DOI: 10.1007/s11120-006-9047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 01/24/2006] [Indexed: 05/08/2023]
Abstract
The photosynthetic apparatus of purple bacteria in the genus Rhodobacter includes a core complex consisting of the reaction centre (RC), light-harvesting complex 1 (LH1), and the PufX protein. PufX modulates LH1 structure and facilitates photosynthetic quinone/quinol exchange. We deleted RC/LH1 genes in pufX+ and pufX++ (merodiploid) strains of Rhodobacter capsulatus, which reduced PufX levels regardless of pufX gene copy number and location. Photosynthetic growth of RC-only strains and independent assembly kinetics of the RC and LH1 were unaffected by pufX merodiploidy, but the absorption spectra of strains expressing the RC plus either LH1 alpha or beta indicated that PufX may influence bacteriochlorophyll binding environments. Significant self-association of the PufX transmembrane segment was detected in a hybrid protein expression system, consistent with a role of PufX in core complex dimerization, as proposed for other Rhodobacter species. Our results indicate that in R. capsulatus PufX has the potential to be a central, homodimeric core complex component, and its cellular level is increased by interactions with the RC and LH1.
Collapse
Affiliation(s)
- Muktak Aklujkar
- Department of Microbiology and Immunology, University of British Columbia, V6T 1Z3, Vancouver, BC, Canada.
| | | |
Collapse
|