1
|
Manjunath P, Stojkovič G, Euro L, Konovalova S, Wanrooij S, Koski K, Tyynismaa H. Preferential binding of ADP-bound mitochondrial HSP70 to the nucleotide exchange factor GRPEL1 over GRPEL2. Protein Sci 2024; 33:e5190. [PMID: 39445986 PMCID: PMC11500471 DOI: 10.1002/pro.5190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.
Collapse
Affiliation(s)
- Pooja Manjunath
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Gorazd Stojkovič
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Liliya Euro
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
GRPEL2 Knockdown Exerts Redox Regulation in Glioblastoma. Int J Mol Sci 2021; 22:ijms222312705. [PMID: 34884508 PMCID: PMC8657957 DOI: 10.3390/ijms222312705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
Collapse
|
3
|
Upadhyay T, Potteth US, Karekar VV, Saraogi I. A Stutter in the Coiled-Coil Domain of Escherichia coli Co-chaperone GrpE Connects Structure with Function. Biochemistry 2021; 60:1356-1367. [PMID: 33881310 DOI: 10.1021/acs.biochem.1c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the co-chaperone GrpE acts as a nucleotide exchange factor and plays an important role in controlling the chaperone cycle of DnaK. The functional form of GrpE is an asymmetric dimer, consisting of a non-ideal coiled coil. Partial unfolding of this region during heat stress results in reduced nucleotide exchange and disrupts protein folding by DnaK. In this study, we elucidate the role of non-ideality in the coiled-coil domain of Escherichia coli GrpE in controlling its co-chaperone activity. The presence of a four-residue stutter introduces nonheptad periodicity in the GrpE coiled coil, resulting in global structural changes in GrpE and regulating its interaction with DnaK. Introduction of hydrophobic residues at the stutter core increased the structural stability of the protein. Using an in vitro FRET assay, we show that the enhanced stability of GrpE resulted in an increased affinity for DnaK. However, these mutants were unable to support bacterial growth at 42°C in a grpE-deleted E. coli strain. This work provides valuable insights into the functional role of a stutter in GrpE in regulating the DnaK-chaperone cycle during heat stress. More generally, our findings illustrate how stutters in a coiled-coil domain regulate structure-function trade-off in proteins.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
4
|
Konovalova S, Liu X, Manjunath P, Baral S, Neupane N, Hilander T, Yang Y, Balboa D, Terzioglu M, Euro L, Varjosalo M, Tyynismaa H. Redox regulation of GRPEL2 nucleotide exchange factor for mitochondrial HSP70 chaperone. Redox Biol 2018; 19:37-45. [PMID: 30098457 PMCID: PMC6089081 DOI: 10.1016/j.redox.2018.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are central organelles to cellular metabolism. Their function relies largely on nuclear-encoded proteins that must be imported from the cytosol, and thus the protein import pathways are important for the maintenance of mitochondrial proteostasis. Mitochondrial HSP70 (mtHsp70) is a key component in facilitating the translocation of proteins through the inner membrane into the mitochondrial matrix. Its protein folding cycle is regulated by the nucleotide-exchange factor GrpE, which triggers the release of folded proteins by ATP rebinding. Vertebrates have two mitochondrial GrpE paralogs, GRPEL1 and 2, but without clearly defined roles. Using BioID proximity labeling to identify potential binding partners of the GRPELs in the mitochondrial matrix, we obtained results supporting a model where both GRPELs regulate mtHsp70 as homodimers. We show that GRPEL2 is not essential in human cultured cells, and its absence does not prevent mitochondrial protein import. Instead we find that GRPEL2 is redox regulated in oxidative stress. In the presence of hydrogen peroxide, GRPEL2 forms dimers through intermolecular disulfide bonds in which Cys87 is the thiol switch. We propose that the dimerization of GRPEL2 may activate the folding machinery responsible for protein import into mitochondrial matrix or enhance the chaperone activity of mtHSP70, thus protecting mitochondrial proteostasis in oxidative stress.
Collapse
Affiliation(s)
- Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pooja Manjunath
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Sundar Baral
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Nirajan Neupane
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Yang Yang
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Dores-Silva PR, Beloti LL, Minari K, Silva SMO, Barbosa LRS, Borges JC. Structural and functional studies of Hsp70-escort protein--Hep1--of Leishmania braziliensis. Int J Biol Macromol 2015; 79:903-12. [PMID: 26071939 DOI: 10.1016/j.ijbiomac.2015.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Hep1 is a mitochondrial Hsp70 (mtHsp70) co-chaperone that presents a zinc finger domain essential for its function. This co-chaperone acts to maintain mtHsp70 in its soluble and functional state. In this work, we have demonstrated that Leishmania braziliensis mtHsp70 (LbmtHsp70) is also dependent on the assistance of Hep1. To understand the L. braziliensis Hep1 (LbHep1) structure-function relationship, we produced LbHep1 and two truncated mutants corresponding to the C-terminal zinc finger domain and the N-terminal region. We observed that LbHep1 is composed of an unfolded N-terminal region and a β-sheet-folded C-terminal domain, which holds the zinc-binding motif. Both LbHep1 and the zinc finger domain construction maintained LbmtHsp70 solubility in co-expression systems after cell lysis. In solution, LbHep1 behaved as a highly elongated monomer, probably due to the unfolded N-terminal region. Furthermore, we also observed that the zinc ion interacted with LbHep1 with high affinity and was critical for LbHep1 structure and stability because its removal from LbHep1 solutions altered the protein structure and stability. In vitro, LbHep1 protected, in sub-stoichiometric fashion, LbmtHsp70 from thermally induced aggregation but did not present intrinsic chaperone activity on model client proteins. Therefore, LbHep1 is a specific chaperone for LbmtHsp70.
Collapse
Affiliation(s)
- P R Dores-Silva
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - L L Beloti
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - K Minari
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil; Post-Graduation Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos - UFSCar, São Carlos, SP 13565-905, Brazil
| | - S M O Silva
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - L R S Barbosa
- Institute of Physics, University of São Paulo - USP, São Paulo, SP 05508-090, Brazil
| | - J C Borges
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
6
|
Dores-Silva PR, Minari K, Ramos CHI, Barbosa LRS, Borges JC. Structural and stability studies of the human mtHsp70-escort protein 1: an essential mortalin co-chaperone. Int J Biol Macromol 2013; 56:140-8. [PMID: 23462535 DOI: 10.1016/j.ijbiomac.2013.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 11/20/2022]
Abstract
Mitochondrial Hsp70 is involved in both protein import and folding process, among other essential functions. In mammalian cells, due to its role in the malignant process, it receives the name of mortalin. Despite its importance in protein and mitochondrial homeostasis, mortalin tends to self-aggregate in vitro and in vivo, the later leads to mitochondrial biogenesis failure. Recently, a zinc-finger protein, named Hsp70-escort protein 1 (Hep1, also called Zim17/TIM15/DNLZ), was described as an essential human mitochondrial mortalin co-chaperone which avoids its self-aggregation. Here, we report structural studies of the human Hep1 (hHep1). The results indicate that hHep1 shares some structural similarities with the yeast ortholog despite the low identity and functional differences. We also observed that hHep1 oligomerizes in a concentration-dependent fashion and that the zinc ion, which is essential for hHep1 in vivo function, has an important protein-structure stabilizing effect.
Collapse
Affiliation(s)
- P R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | | | | | | | | |
Collapse
|
7
|
Dores-Silva P, Silva E, Gomes F, Silva K, Barbosa L, Borges J. Low resolution structural characterization of the Hsp70-interacting protein – Hip – from Leishmania braziliensis emphasizes its high asymmetry. Arch Biochem Biophys 2012; 520:88-98. [DOI: 10.1016/j.abb.2012.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
|
8
|
Hu C, Lin SY, Chi WT, Charng YY. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:747-58. [PMID: 22128139 PMCID: PMC3271764 DOI: 10.1104/pp.111.187674] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/27/2011] [Indexed: 05/20/2023]
Abstract
The duplication and divergence of heat stress (HS) response genes might help plants adapt to varied HS conditions, but little is known on the topic. Here, we examined the evolution and function of Arabidopsis (Arabidopsis thaliana) mitochondrial GrpE (Mge) proteins. GrpE acts as a nucleotide-exchange factor in the Hsp70/DnaK chaperone machinery. Genomic data show that AtMge1 and AtMge2 arose from a recent whole-genome duplication event. Phylogenetic analysis indicated that duplication and preservation of Mges occurred independently in many plant species, which suggests a common tendency in the evolution of the genes. Intron retention contributed to the divergence of the protein structure of Mge paralogs in higher plants. In both Arabidopsis and tomato (Solanum lycopersicum), Mge1 is induced by ultraviolet B light and Mge2 is induced by heat, which suggests regulatory divergence of the genes. Consistently, AtMge2 but not AtMge1 is under the control of HsfA1, the master regulator of the HS response. Heterologous expression of AtMge2 but not AtMge1 in the temperature-sensitive Escherichia coli grpE mutant restored its growth at 43°C. Arabidopsis T-DNA knockout lines under different HS regimes revealed that Mge2 is specifically required for tolerating prolonged exposure to moderately high temperature, as compared with the need of the heat shock protein 101 and the HS-associated 32-kD protein for short-term extreme heat. Therefore, with duplication and subfunctionalization, one copy of the Arabidopsis Mge genes became specialized in a distinct type of HS. We provide direct evidence supporting the connection between gene duplication and adaptation to environmental stress.
Collapse
|
9
|
Marom M, Azem A, Mokranjac D. Understanding the molecular mechanism of protein translocation across the mitochondrial inner membrane: still a long way to go. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:990-1001. [PMID: 20646995 DOI: 10.1016/j.bbamem.2010.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 11/18/2022]
Abstract
In order to reach the final place of their function, approximately half of the proteins in any eukaryotic cell have to be transported across or into one of the membranes in the cell. In this article, we present an overview of our current knowledge concerning the structural properties of the TIM23 complex and their relationship with the molecular mechanism of protein transport across the mitochondrial inner membrane. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Milit Marom
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
10
|
Borges JC, Ramos CHI. Characterization of nucleotide-induced changes on the quaternary structure of human 70 kDa heat shock protein Hsp70.1 by analytical ultracentrifugation. BMB Rep 2009; 42:166-71. [PMID: 19336004 DOI: 10.5483/bmbrep.2009.42.3.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hsp70s assist in the process of protein folding through nucleotide-controlled cycles of substrate binding and release by alternating from an ATP-bound state in which the affinity for substrate is low to an ADP-bound state in which the affinity for substrate is high. It has been long recognized that the two-domain structure of Hsp70 is critical for these regulated interactions. Therefore, it is important to obtain information about conformational changes in the relative positions of Hsp70 domains caused by nucleotide binding. In this study, analytical ultracentrifugation and dynamic light scattering were used to evaluate the effect of ADP and ATP binding on the conformation of the human stress-induced Hsp70.1 protein. The results of these experiments showed that ATP had a larger effect on the conformation of Hsp70 than ADP. In agreement with previous biochemical experiments, our results suggest that conformational changes caused by nucleotide binding are a consequence of the movement in position of both nucleotide- and substrate-binding domains.
Collapse
Affiliation(s)
- Julio C Borges
- Institute of Chemistry, PO Box 6154, University of Campinas-UNICAMP, Campinas SP, 13083-970, Brazil
| | | |
Collapse
|
11
|
Ramos CH, Oliveira CL, Yang-Fan C, Torriani IL, Cyr DM. Conserved central domains control the quaternary structure of type I and type II Hsp40 molecular chaperones. J Mol Biol 2008; 383:155-66. [PMID: 18723025 PMCID: PMC2613655 DOI: 10.1016/j.jmb.2008.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
Abstract
Heat shock protein (Hsp)40s play an essential role in protein metabolism by regulating the polypeptide binding and release cycle of Hsp70. The Hsp40 family is large, and specialized family members direct Hsp70 to perform highly specific tasks. Type I and Type II Hsp40s, such as yeast Ydj1 and Sis1, are homodimers that dictate functions of cytosolic Hsp70, but how they do so is unclear. Type I Hsp40s contain a conserved, centrally located cysteine-rich domain that is replaced by a glycine- and methionine-rich region in Type II Hsp40s, but the mechanism by which these unique domains influence Hsp40 structure and function is unknown. This is the case because high-resolution structures of full-length forms of these Hsp40s have not been solved. To fill this void, we built low-resolution models of the quaternary structure of Ydj1 and Sis1 with information obtained from biophysical measurements of protein shape, small-angle X-ray scattering, and ab initio protein modeling. Low-resolution models were also calculated for the chimeric Hsp40s YSY and SYS, in which the central domains of Ydj1 and Sis1 were exchanged. Similar to their human homologs, Ydj1 and Sis1 each has a unique shape with major structural differences apparently being the orientation of the J domains relative to the long axis of the dimers. Central domain swapping in YSY and SYS correlates with the switched ability of YSY and SYS to perform unique functions of Sis1 and Ydj1, respectively. Models for the mechanism by which the conserved cysteine-rich domain and glycine- and methionine-rich region confer structural and functional specificity to Type I and Type II Hsp40s are discussed.
Collapse
Affiliation(s)
- Carlos H.I. Ramos
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas-UNICAMP, Campinas SP, 13083-970, Brazil
- Laboratório Nacional de Luz Síncrontron, Campinas SP, Brazil
| | - Cristiano L.P. Oliveira
- Physics Institute, State University of Campinas-UNICAMP, Campinas SP, 13083-970, Brazil
- Laboratório Nacional de Luz Síncrontron, Campinas SP, Brazil
| | - Chung Yang-Fan
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC, 27599, USA
| | - Iris L. Torriani
- Physics Institute, State University of Campinas-UNICAMP, Campinas SP, 13083-970, Brazil
- Laboratório Nacional de Luz Síncrontron, Campinas SP, Brazil
| | - Douglas M. Cyr
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC, 27599, USA
| |
Collapse
|
12
|
Zhai P, Stanworth C, Liu S, Silberg JJ. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis. J Biol Chem 2008; 283:26098-106. [PMID: 18632665 DOI: 10.1074/jbc.m803475200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| | | | | | | |
Collapse
|
13
|
Borges JC, Ramos CHI. Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Arch Biochem Biophys 2006; 452:46-54. [PMID: 16806043 DOI: 10.1016/j.abb.2006.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 11/23/2022]
Abstract
Hsp70 alternates between an ATP-bound state in which the affinity for substrate is low and an ADP-bound state in which the affinity for substrate is high, as a result Hsp70 assists the protein folding process through nucleotide-controlled cycles of substrate binding and release. In this work, we describe the cloning and purification of the human 70-kDa heat shock cognate protein, Hsc70, and the use of circular dichroism, intrinsic emission fluorescence, and isothermal titration calorimetry to characterize conformational changes induced by ADP and ATP binding. Binding of either ADP or ATP were not accompanied by a net change in secondary structure suggesting that the conformational rearrangement caused by nucleotide binding is localized. MgADP or MgATP had a greater effect in the stability at stress temperatures than ADP or ATP did. Isothermal titration calorimetry data pointed out that Hsc70 had a lower affinity for ATP (KD=710 nM) than for ADP (KD=260 nM).
Collapse
Affiliation(s)
- Júlio C Borges
- Laboratório Nacional de Luz Síncrotron, P.O. Box 6192, Zip code 13084-971, Campinas SP, Brazil
| | | |
Collapse
|