1
|
De Nardis C, Lössl P, van den Biggelaar M, Madoori PK, Leloup N, Mertens K, Heck AJR, Gros P. Recombinant Expression of the Full-length Ectodomain of LDL Receptor-related Protein 1 (LRP1) Unravels pH-dependent Conformational Changes and the Stoichiometry of Binding with Receptor-associated Protein (RAP). J Biol Chem 2016; 292:912-924. [PMID: 27956551 DOI: 10.1074/jbc.m116.758862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
LDL receptor-related protein 1 (LRP1) is a highly modular protein and the largest known mammalian endocytic receptor. LRP1 binds and internalizes many plasma components, playing multiple crucial roles as a scavenger and signaling molecule. One major challenge to studying LRP1 has been that it is difficult to express such a large, highly glycosylated, and cysteine-rich protein, limiting structural studies to LRP1 fragments. Here, we report the first recombinant expression of the complete 61 domains of the full-length LRP1 ectodomain. This advance was achieved with a multistep cloning approach and by using DNA dilutions to improve protein yields. We investigated the binding properties of LRP1 using receptor-associated protein (RAP) as a model ligand due to its tight binding interaction. The LRP1 conformation was studied in its bound and unbound state using mass spectrometry, small-angle X-ray scattering, and negative-stain electron microscopy at neutral and acidic pH. Our findings revealed a pH-dependent release of the ligand associated with a conformational change of the receptor. In summary, this investigation of the complete LRP1 ectodomain significantly advances our understanding of this important receptor and provides the basis for further elucidating the mechanism of action of LRP1 in a whole and integrated system.
Collapse
Affiliation(s)
- Camilla De Nardis
- From the Crystal & Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht
| | - Philip Lössl
- the Biomolecular Mass Spectrometry & Proteomics Group and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht
| | | | - Pramod K Madoori
- From the Crystal & Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht
| | - Nadia Leloup
- From the Crystal & Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht
| | - Koen Mertens
- the Department of Plasma Proteins, Sanquin Research, 1006 AN Amsterdam, and.,the Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- the Biomolecular Mass Spectrometry & Proteomics Group and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht
| | - Piet Gros
- From the Crystal & Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht,
| |
Collapse
|
2
|
Rother S, Samsonov SA, Hempel U, Vogel S, Moeller S, Blaszkiewicz J, Köhling S, Schnabelrauch M, Rademann J, Pisabarro MT, Hintze V, Scharnweber D. Sulfated Hyaluronan Alters the Interaction Profile of TIMP-3 with the Endocytic Receptor LRP-1 Clusters II and IV and Increases the Extracellular TIMP-3 Level of Human Bone Marrow Stromal Cells. Biomacromolecules 2016; 17:3252-3261. [DOI: 10.1021/acs.biomac.6b00980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra Rother
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Sergey A. Samsonov
- Structural
Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ute Hempel
- Institute
of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Sarah Vogel
- Institute
of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials
Department, INNOVENT e.V., Prüssingstraße 27 B, 07745 Jena, Germany
| | - Joanna Blaszkiewicz
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | - Sebastian Köhling
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | | | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2, 14195 Berlin, Germany
- Institute
of Medical Physics and Biophysics, Universität Leipzig, Härtelstr.
16/18, 04107 Leipzig, Germany
| | - M. Teresa Pisabarro
- Structural
Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Vera Hintze
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Dieter Scharnweber
- Institute
of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
3
|
Dolmer K, Campos A, Gettins PGW. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1). J Biol Chem 2013; 288:24081-90. [PMID: 23798683 DOI: 10.1074/jbc.m113.473728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.
Collapse
Affiliation(s)
- Klavs Dolmer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
4
|
Annabi B, Doumit J, Plouffe K, Laflamme C, Lord-Dufour S, Béliveau R. Members of the low-density lipoprotein receptor-related proteins provide a differential molecular signature between parental and CD133+ DAOY medulloblastoma cells. Mol Carcinog 2010; 49:710-717. [PMID: 20564348 DOI: 10.1002/mc.20645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the low-density lipoprotein receptor-related protein (LRP) family are involved in metabolic stress and resistance phenotypes of cancer cells. New breakthroughs in brain cancer therapy have exploited that molecular signature and proved that efficient delivery of therapeutic agents involve LRP-mediated mechanisms. We performed gene expression profiling of CD133, a cell surface cancer stem cell marker, and of LRP in response to in vitro nutrient deprivation. We found that CD133 was selectively induced in serum-starved DAOY medulloblastoma cells but not in U87MG glioblastoma cells. Such CD133 induction was correlated to increases in LRP-1 and LRP-1b gene and protein expression. When a specific CD133(+) DAOY cell population was sorted from parental DAOY, we found increases in LRP-5 and LRP-8. Uptake of alpha(2)-macroglobulin, a specific LRP-1/1b ligand, was increased in serum-starved parental DAOY cells but not in CD133(+) DAOY cells, and receptor-associated protein (RAP), which binds to all cell surface LRPs, was able to compete for that uptake. Conversely, RAP binding was increased in serum-starved parental DAOY but alpha(2)-macroglobulin was unable to compete for such uptake. Strategies aiming at targeting cancer stem cell metabolic adaptative responses, such as that through LRP differential expression within the brain tissue microenvironmental niche, can now be envisioned.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Peptides modeled after the α-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons. Eur J Cell Biol 2009; 88:433-43. [DOI: 10.1016/j.ejcb.2009.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/15/2023] Open
|
6
|
Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP. Biochem J 2009; 421:273-82. [PMID: 19397492 PMCID: PMC2708935 DOI: 10.1042/bj20090175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 °C, whereas temperature change from 22 °C to 37 °C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.
Collapse
|
7
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Lee D, Walsh JD, Migliorini M, Yu P, Cai T, Schwieters CD, Krueger S, Strickland DK, Wang YX. The structure of receptor-associated protein (RAP). Protein Sci 2007; 16:1628-40. [PMID: 17656581 PMCID: PMC2203372 DOI: 10.1110/ps.072865407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The receptor-associated protein (RAP) is a molecular chaperone that binds tightly to certain newly synthesized LDL receptor family members in the endoplasmic reticulum (ER) and facilitates their delivery to the Golgi. We have adopted a divide-and-conquer strategy to solve the structures of the individual domains of RAP using NMR spectroscopy. We present here the newly determined structure of domain 2. Based on this structure and the structures of domains 1 and 3, which were solved previously, we utilized experimental small-angle neutron scattering (SANS) data and a novel simulated annealing protocol to characterize the overall structure of RAP. The results reveal that RAP adopts a unique structural architecture consisting of three independent three-helix bundles that are connected by long and flexible linkers. The flexible linkers and the quasi-repetitive structural architecture may allow RAP to adopt various possible conformations when interacting with the LDL receptors, which are also made of repetitive substructure units.
Collapse
Affiliation(s)
- Donghan Lee
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Meijer AB, Rohlena J, van der Zwaan C, van Zonneveld AJ, Boertjes RC, Lenting PJ, Mertens K. Functional duplication of ligand-binding domains within low-density lipoprotein receptor-related protein for interaction with receptor associated protein, alpha2-macroglobulin, factor IXa and factor VIII. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:714-22. [PMID: 17512806 DOI: 10.1016/j.bbapap.2007.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/01/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP) binds a range of proteins including receptor associated protein (RAP), activated alpha2-macroglobulin (alpha2M*), factor IXa (FIXa), and factor VIII (FVIII) light chain. The binding is mediated by the complement-type repeats, which are clustered in four distinct regions within LRP. Cluster II of 8 repeats (CR3-10) and cluster IV of 11 repeats (CR21-31) have been implicated in ligand-binding. Previous studies have aimed to identify the cluster II repeats involved in binding alpha2M* and RAP. We now evaluated the binding to RAP, alpha2M*, FIXa and FVIII light chain of triplicate repeat-fragments of not only clusters II but also of cluster IV. Employing surface plasmon resonance analysis, we found that most efficient ligand-binding was displayed by the repeats within region CR4-8 of cluster II and within region CR24-28 of cluster IV. Whereas the binding to RAP could be attributed to two consecutive repeats (CR5-6, CR26-27), combinations of three repeats showed most efficient binding to FIXa (CR6-8, CR26-28), FVIII light chain (CR5-7, CR6-8, CR24-26), and alpha2M* (CR4-6, CR24-26). The results imply that there is an internal functional duplication of complement-type repeats within LRP resulting in two clusters that bind the same ligands.
Collapse
Affiliation(s)
- Alexander B Meijer
- Sanquin Research, Department of Plasma Proteins, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|