1
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Gianotti AR, Klinke S, Ermácora MR. The structure of unliganded sterol carrier protein 2 from Yarrowia lipolytica unveils a mechanism for binding site occlusion. J Struct Biol 2020; 213:107675. [PMID: 33278583 DOI: 10.1016/j.jsb.2020.107675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Isolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica. Herein, we report the X-ray structure of unliganded ylSCP2 refined to 2.0 Å resolution. Comparison with the previously solved liganded ylSCP2 structure unveiled a novel mechanism for binding site occlusion. The liganded ylSCP2 binding site is a large cavity with a volume of more than 800 Å3. In unliganded ylSCP2 the binding site is reduced to about 140 Å3. The obliteration is caused by a swing movement of the C-terminal α helix 5 and a subtle compaction of helices 2-4. Previous pairwise comparisons were between homologous SCP2 domains with a uncertain binding status. The reported unliganded ylSCP2 structure allows for the first time a fully controlled comparative analysis of the conformational effects of ligand occupation dispelling several doubts regarding the architecture of SCP2 binding site.
Collapse
Affiliation(s)
- Alejo R Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina; Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
3
|
González-Robles A, González-Lázaro M, Lagunes-Guillén AE, Omaña-Molina M, Lares-Jiménez LF, Lares-Villa F, Martínez-Palomo A. Ultrastructural, Cytochemical, and Comparative Genomic Evidence of Peroxisomes in Three Genera of Pathogenic Free-Living Amoebae, Including the First Morphological Data for the Presence of This Organelle in Heteroloboseans. Genome Biol Evol 2020; 12:1734-1750. [PMID: 32602891 PMCID: PMC7549135 DOI: 10.1093/gbe/evaa129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins-which are essential for peroxisome biogenesis, proliferation, and protein import-are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.
Collapse
Affiliation(s)
- Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Mónica González-Lázaro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Anel Edith Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, Estado de México, Mexico
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
4
|
RNA deep sequencing reveals novel transcripts and pathways involved in the unsaturated fatty acid metabolism in chicken. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Risso VA, Ermácora MR. Equilibrium partially folded states of B. licheniformis
β
-lactamase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:341-348. [PMID: 30929094 DOI: 10.1007/s00249-019-01361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
β -Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class Aβ -lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp→ Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp→ Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071, Granada, Spain
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina.
- Instituto Multidisciplinario de Biología Celular, Conicet-CIC-UNLP, Calle 526 y Camino General Belgrano, B1906APO, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Fu Y, Cui X, Liu J, Zhang X, Zhang H, Yang C, Liu Q. Synergistic roles of acyl-CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in Toxoplasma
lipid metabolism. Cell Microbiol 2018; 21:e12970. [DOI: 10.1111/cmi.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/13/2018] [Accepted: 10/21/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning; Beijing Research Centre for Preventive Medicine; Beijing China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Congshan Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine; China Agricultural University; Beijing China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
7
|
Gianotti AR, Ferreyra RG, Ermácora MR. Binding properties of sterol carrier protein 2 (SCP2) characterized using Laurdan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1143-1152. [DOI: 10.1016/j.bbapap.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
8
|
Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R. Virulence function of the Ustilago maydis sterol carrier protein 2. THE NEW PHYTOLOGIST 2018; 220:553-566. [PMID: 29897130 DOI: 10.1111/nph.15268] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 05/06/2023]
Abstract
The peroxisomal sterol carrier protein 2 (Scp2) of the biotrophic maize pathogen Ustilago maydis was detected in apoplastic fluid, suggesting that it might function as a secreted effector protein. Here we analyze the role of the scp2 gene during plant colonization. We used reverse genetics approaches to delete the scp2 gene, determined stress sensitivity and fatty acid utilization of mutants, demonstrated secretion of Scp2, used quantitative reverse transcription polymerase chain reaction for expression analysis and expressed GFP-Scp2 fusion proteins for protein localization. scp2 mutants were strongly attenuated in virulence and this defect manifested itself during penetration. Scp2 localized to peroxisomes and peroxisomal targeting was necessary for its virulence function. Deletion of scp2 in U. maydis interfered neither with growth nor with peroxisomal β-oxidation. Conventionally secreted Scp2 protein could not rescue the virulence defect. scp2 mutants displayed an altered localization of peroxisomes. Our results show a virulence function for Scp2 during penetration that is probably carried out by Scp2 in peroxisomes. We speculate that Scp2 affects the lipid composition of membranes and in this way ensures the even cellular distribution of peroxisomes.
Collapse
Affiliation(s)
- Sina Krombach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Stefanie Reissmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Saskia Kreibich
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Florian Bochen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| |
Collapse
|
9
|
Hanko EK, Denby CM, Sànchez i Nogué V, Lin W, Ramirez KJ, Singer CA, Beckham GT, Keasling JD. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metab Eng 2018; 48:52-62. [DOI: 10.1016/j.ymben.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 11/17/2022]
|
10
|
A structural appraisal of sterol carrier protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:565-577. [DOI: 10.1016/j.bbapap.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
11
|
Dulermo R, Gamboa-Meléndez H, Ledesma-Amaro R, Thévenieau F, Nicaud JM. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1202-17. [DOI: 10.1016/j.bbalip.2015.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022]
|
12
|
De Berti FP, Capaldi S, Ferreyra R, Burgardt N, Acierno JP, Klinke S, Monaco HL, Ermácora MR. The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity. ACTA ACUST UNITED AC 2013; 14:145-53. [DOI: 10.1007/s10969-013-9166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022]
|
13
|
NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Appl Biochem Biotechnol 2013; 171:403-16. [PMID: 23846800 DOI: 10.1007/s12010-013-0373-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
NADP(+)-dependent isocitrate dehydrogenase from Yarrowia lipolytica CLIB122 (YlIDP) was overexpressed and purified. The molecular mass of YlIDP was estimated to be about 81.3 kDa, suggesting its homodimeric structure in solution. YlIDP was divalent cation dependent and Mg(2+) was found to be the most favorable cofactor. The purified recombinant YlIDP displayed maximal activity at 55 °C and its optimal pH for catalysis was found to be around 8.5. Heat inactivation studies revealed that the recombinant YlIDP was stable below 45 °C, but its activity dropped quickly above this temperature. YlIDP was absolutely dependent on NADP(+) and no NAD-dependent activity could be detected. The K m values displayed for NADP(+) and isocitrate were 59 and 31 μM (Mg(2+)), 120 μM and 58 μM (Mn(2+)), respectively. Mutant enzymes were constructed to tentatively alter the coenzyme specificity of YlIDP. The K m values for NADP(+) of R322D mutant was 2,410 μM, being about 41-fold higher than that of wild type enzyme. NAD(+)-dependent activity was detected for R322D mutant and the K m and k cat values for NAD(+) were 47,000 μM and 0.38 s(-1), respectively. Although the R322D mutant showed low activity with NAD(+), it revealed the feasibility of engineering an eukaryotic IDP to a NAD(+)-dependent one.
Collapse
|
14
|
Dey P, Maiti M. Molecular characterization of a novel isolate of Candida tropicalis
for enhanced lipid production. J Appl Microbiol 2013; 114:1357-68. [DOI: 10.1111/jam.12133] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 01/15/2023]
Affiliation(s)
- P. Dey
- Advanced Laboratory for Plant Genetic Engineering; Advanced Technology Development Centre; Indian Institute of Technology Kharagpur; Kharagpur India
| | - M.K. Maiti
- Advanced Laboratory for Plant Genetic Engineering; Advanced Technology Development Centre; Indian Institute of Technology Kharagpur; Kharagpur India
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur India
| |
Collapse
|
15
|
Quaternary structure of human, Drosophila melanogaster
and Caenorhabditis elegans
MFE-2 in solution from synchrotron small-angle X-ray scattering. FEBS Lett 2013; 587:305-10. [DOI: 10.1016/j.febslet.2012.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/22/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
|
16
|
Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 2011; 90:1193-206. [PMID: 21452033 DOI: 10.1007/s00253-011-3212-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- AgroParisTech, UMR1319, Micalis, Centre de Biotechnologie Agro-Industrielle, Thiverval-Grignon, France
| | | | | |
Collapse
|
17
|
Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 2009; 48:375-87. [PMID: 19720081 DOI: 10.1016/j.plipres.2009.08.005] [Citation(s) in RCA: 441] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 01/13/2023]
Abstract
The yeast Yarrowialipolytica has developed very efficient mechanisms for breaking down and using hydrophobic substrates. It is considered an oleaginous yeast, based on its ability to accumulate large amounts of lipids. Completion of the sequencing of the Y.lipolytica genome and the existence of suitable tools for genetic manipulation have made it possible to use the metabolic function of this species for biotechnological applications. In this review, we describe the coordinated pathways of lipid metabolism, storage and mobilization in this yeast, focusing in particular on the roles and regulation of the various enzymes and organelles involved in these processes. The physiological responses of Y.lipolytica to hydrophobic substrates include surface-mediated and direct interfacial transport processes, the production of biosurfactants, hydrophobization of the cytoplasmic membrane and the formation of protrusions. We also discuss culture conditions, including the mode of culture control and the culture medium, as these conditions can be modified to enhance the accumulation of lipids with a specific composition and to identify links between various biological processes occurring in the cells of this yeast. Examples are presented demonstrating the potential use of Y.lipolytica in fatty-acid bioconversion, substrate valorization and single-cell oil production. Finally, this review also discusses recent progress in our understanding of the metabolic fate of hydrophobic compounds within the cell: their terminal oxidation, further degradation or accumulation in the form of intracellular lipid bodies.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Microbiology and Molecular Genetic Laboratory, CNRS UMR2585, INRA UMR1238, AgroParisTech, INRA centre de Versailles-Grignon BP 01, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
18
|
Burgardt NI, Ferreyra RG, Falomir-Lockhart L, Córsico B, Ermácora MR, Ceolín M. Biophysical characterisation and urea-induced unfolding of recombinant Yarrowia lipolytica sterol carrier protein-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1115-22. [PMID: 19376277 DOI: 10.1016/j.bbapap.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/18/2009] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Noelia I Burgardt
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Falomir Lockhart LJ, Burgardt NI, Ferreyra RG, Ceolin M, Ermácora MR, Córsico B. Fatty acid transfer from Yarrowia lipolytica sterol carrier protein 2 to phospholipid membranes. Biophys J 2009; 97:248-56. [PMID: 19580762 PMCID: PMC2711373 DOI: 10.1016/j.bpj.2009.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 02/11/2009] [Accepted: 03/03/2009] [Indexed: 11/17/2022] Open
Abstract
Sterol carrier protein 2 (SCP2) is an intracellular protein domain found in all forms of life. It was originally identified as a sterol transfer protein, but was recently shown to also bind phospholipids, fatty acids, and fatty-acyl-CoA with high affinity. Based on studies carried out in higher eukaryotes, it is believed that SCP2 targets its ligands to compartmentalized intracellular pools and participates in lipid traffic, signaling, and metabolism. However, the biological functions of SCP2 are incompletely characterized and may be different in microorganisms. Herein, we demonstrate the preferential localization of SCP2 of Yarrowia lipolytica (YLSCP2) in peroxisome-enriched fractions and examine the rate and mechanism of transfer of anthroyloxy fatty acid from YLSCP2 to a variety of phospholipid membranes using a fluorescence resonance energy transfer assay. The results show that fatty acids are transferred by a collision-mediated mechanism, and that negative charges on the membrane surface are important for establishing a "collisional complex". Phospholipids, which are major constituents of peroxisome and mitochondria, induce special effects on the rates of transfer. In conclusion, YLSCP2 may function as a fatty acid transporter with some degree of specificity, and probably diverts fatty acids to the peroxisomal metabolism.
Collapse
Affiliation(s)
- Lisandro J. Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia I. Burgardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Raúl G. Ferreyra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Marcelo Ceolin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Físico-Química Teórica y Aplicada (INIFTA), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario R. Ermácora
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Abstract
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Delta gut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to beta-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal beta-oxidation. Additional deletion of the POX1 to POX6 genes in the Delta gut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.
Collapse
|
21
|
Meyer V, Damveld RA, Arentshorst M, Stahl U, van den Hondel CAMJJ, Ram AFJ. Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of caspofungin and fenpropimorph. J Biol Chem 2007; 282:32935-48. [PMID: 17804411 DOI: 10.1074/jbc.m705856200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How yeast cells respond to cell wall stress is relatively well understood; however, how filamentous fungi cope with cell wall damage is largely unexplored. Here we report the first transcriptome analysis of Aspergillus niger exposed to the antifungal compounds caspofungin, an inhibitor of beta-1,3-glucan synthesis, and fenpropimorph, which inhibits ergosterol synthesis. The presence of sublethal drug concentrations allowed A. niger to adapt to the stress conditions and to continue growth by the establishment of new polarity axes and formation of new germ tubes. By comparing the expression profile between caspofungin-exposed and nonexposed A. niger germlings, we identified a total of 172 responsive genes out of 14,509 open reading frames present on the Affymetrix microarray chips. Among 165 up-regulated genes, mainly genes predicted to function in (i) cell wall assembly and remodeling, (ii) cytoskeletal organization, (iii) signaling, and (iv) oxidative stress response were affected. Fenpropimorph modulated expression of 43 genes, of which 41 showed enhanced expression. Here, genes predicted to function in (i) membrane reconstruction, (ii) lipid signaling, (iii) cell wall remodeling, and (iv) oxidative stress response were identified. Northern analyses of selected genes were used to confirm the microarray analyses. The results further show that expression of the agsA gene encoding an alpha-1,3-glucan synthase is up-regulated by both compounds. Using two PagsA-GFP reporter strains of A. niger and subjecting them to 16 different antifungal compounds, including caspofungin and fenpropimorph, we could show that agsA is specifically activated by compounds interfering directly or indirectly with cell wall biosynthesis.
Collapse
Affiliation(s)
- Vera Meyer
- Department of Microbiology and Genetics, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Stanley WA, Versluis K, Schultz C, Heck AJR, Wilmanns M. Investigation of the ligand spectrum of human sterol carrier protein 2 using a direct mass spectrometry assay. Arch Biochem Biophys 2007; 461:50-8. [PMID: 17418802 DOI: 10.1016/j.abb.2007.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/11/2007] [Accepted: 02/12/2007] [Indexed: 11/17/2022]
Abstract
Sterol carrier protein 2 (SCP2) has been investigated by nearly native electrospray ionisation mass spectrometry in the presence of long chain fatty acyl CoAs (LCFA-CoAs) and carnitine derivatives of equivalent fatty acid chain length (LCFA-carnitines). Four SCP2 constructs were compared to examine the influence of the N-terminal presequence and the C-terminal peroxisomal targeting signal on ligand binding. Removal of N- or C-terminal residues did not influence ligand binding. The observation that LCFA-CoAs are high affinity ligands for SCP2 was confirmed, while LCFA-carnitines were demonstrated for the first time not to interact with SCP2. LCFA-CoAs formed non-covalent complexes with SCP2 of 2:1 and 1:1 stoichiometry, which could be dissociated by elevating the energy of the ions upon entrance to the mass spectrometer. A fluorescence-competition assay using Nile Red butyric acid confirmed the mass spectrometric observations in solution. The physiological significance of the lack of LCFA-carnitine binding by SCP2 is discussed.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|