1
|
Wang C, Zhang J, Xu Y, Zhao J, Qiu M, Zhao X, Li G, Qiao W, Tan J. SAP30 deacetylates the Tas protein to inhibit PFV replication. Cell Biosci 2025; 15:53. [PMID: 40275313 PMCID: PMC12023400 DOI: 10.1186/s13578-025-01400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Foamy viruses (FVs), a unique class of retroviruses, establish lifelong latent infections in the host without causing symptoms, contributing to the relatively slow progress in FV research. However, key mutations in FVs can result in severe consequences due to their broad cellular tropism, underscoring the importance of studying latent FV infections. RESULTS To identify new host proteins involved in the replication of prototype foamy virus (PFV), we previously infected the human fibrosarcoma cell line HT1080 with PFV and performed transcriptomic sequencing. The analysis revealed a significant upregulation of SAP30 mRNA levels following PFV infection. Further experiments demonstrated that PFV infection enhances SAP30 promoter activity via the Tas protein, leading to increased SAP30 mRNA and protein expression. Overexpression of SAP30 inhibited PFV replication, whereas knockdown of endogenous SAP30 enhanced PFV replication. Furthermore, SAP30 interacted with the Tas protein to induce its deacetylation, thereby suppressing Tas-mediated transactivation of the PFV LTR and IP promoters. The Sin3 interaction domain at the C-terminus of SAP30 was identified as the critical domain for inhibiting PFV transcription. CONCLUSIONS Our findings suggest that SAP30 inhibits PFV replication by deacetylating the Tas protein, thereby disrupting its transcriptional activation function. KEY WORDS prototype foamy virus; SAP30; Tas; transcription; deacetylation.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Junshi Zhang
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
| | - Yali Xu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiawei Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Manman Qiu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xingli Zhao
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Attaran N, Coates PJ, Zborayova K, Sgaramella N, Nylander K, Gu X. Upregulation of Apoptosis Related Genes in Clinically Normal Tongue Contralateral to Squamous Cell Carcinoma of the Oral Tongue, an Effort to Maintain Tissue Homeostasis. Head Neck Pathol 2024; 18:89. [PMID: 39348078 PMCID: PMC11442960 DOI: 10.1007/s12105-024-01695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE The field cancerization concept indicates the presence of pre-cancerous changes in clinically normal tissue surrounding the tumor. In squamous cell carcinoma of the oral tongue (SCCOT) which is infrequently linked to human papillomavirus infection, we have previously reported that clinically normal tongue contralateral to tumor (NTCT) is molecularly abnormal. Here, combining our transcriptomic and genomic data, we aimed to investigate the contribution of molecular changes in NTCT to cancer development. METHODS Microarray gene expression data of 14 healthy controls, 23 NTCT and 29 SCCOT samples were investigated to characterize transcriptional profiles in NTCT. Whole exome sequencing and RNA-sequencing data of paired NTCT and tumor samples from 15 SCCOT patients were used to study correlation between copy number variation and differential gene expression. RESULTS Using supervised multivariate partial least squares discriminant analysis, a total of 61 mRNAs that distinguish NTCT from healthy tongue were selected. Functional enrichment analysis of the 22 upregulated genes showed increased "positive regulation of nitrogen compound metabolic process" in NTCT. All 12 genes involved in this process have roles in apoptosis (anti- and/or pro-apoptotic). Compared to healthy controls, Zinc Finger Protein 395 (ZNF395), a pro-apoptotic tumor suppressor located on chromosome 8p, was the only gene showing increased mRNA level in NTCT whereas decreased in SCCOT. Given the frequent loss of chromosome 8p in SCCOT, the impact of ZNF395 copy number variation on gene expression was further examined, revealing a positive correlation between copy number and mRNA level (correlation coefficient = 0.572, p < 0.001). CONCLUSION NTCT is susceptible to malignant transformation, where tissue homeostasis is maintained at least partly through regulation of apoptosis. Loss of the pro-apoptotic gene ZNF395 could thus initiate cancer development.
Collapse
Affiliation(s)
- Nima Attaran
- Department of Medical Biosciences/Pathology, Umeå University, Building 6M, 2nd floor, Analysvägen 9, Umeå, 90187, Sweden
- Department of Clinical Sciences, Umeå University, Umeå, 90187, Sweden
| | - Philip J Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Building 6M, 2nd floor, Analysvägen 9, Umeå, 90187, Sweden
- Department of Oral and Maxillo-Facial Surgery, Mater Dei Hospital, 70125, Bari, Italy
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Building 6M, 2nd floor, Analysvägen 9, Umeå, 90187, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Building 6M, 2nd floor, Analysvägen 9, Umeå, 90187, Sweden.
| |
Collapse
|
3
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
4
|
Liu F, Zheng J, Yang G, Pan L, Xie Y, Chen S, Tuo J, Su J, Ou X, Liu R. Unraveling the enigma of B cells in diffuse large B-cell lymphoma: unveiling cancer stem cell-like B cell subpopulation at single-cell resolution. Front Immunol 2023; 14:1310292. [PMID: 38149239 PMCID: PMC10750418 DOI: 10.3389/fimmu.2023.1310292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) represents the most prevalent form of aggressive non-Hodgkin lymphoma. Despite receiving standard treatment, a subset of patients undergoes refractory or recurrent cases, wherein the involvement of cancer stem cells (CSCs) could be significant. Methods We comprehensively characterized B cell subpopulations using single-cell RNA sequencing data from three DLBCL samples and one normal lymph tissue. The CopyKat R package was employed to assess the malignancy of B cell subpopulations based on chromosomal copy number variations. CIBERSORTx software was utilized to estimate the proportions of B cell subpopulations in 230 DLBCL tissues. Furthermore, we employed the pySCENIC to identify key transcription factors that regulate the functionality of B cell subpopulations. By employing CellphoneDB, we elucidated the interplay among tumor microenvironment components within the B cell subpopulations. Finally, we validated our findings through immunofluorescence experiments. Results Our analysis revealed a specific cancer stem cell-like B cell subpopulation exhibiting self-renewal and multilineage differentiation capabilities based on the exploration of B cell subpopulations in DLBCL and normal lymph tissues at the single-cell level. Notably, a high infiltration of cancer stem cell-like B cells correlated with a poor prognosis, potentially due to immune evasion mediated by low expression of major histocompatibility complex molecules. Furthermore, we identified key transcription factor regulatory networks regulated by HMGB3, SAP30, and E2F8, which likely played crucial roles in the functional characterization of the cancer stem cell-like B cell subpopulation. The existence of cancer stem cell-like B cells in DLBCL was validated through immunofluorescent staining. Finally, cell communication between B cells and tumor-infiltrating T cell subgroups provided further insights into the functional characterization of the cancer stem cell-like B cell subpopulation. Conclusions Our research provides a systematic description of a specific cancer stem cell-like B cell subpopulation associated with a poor prognosis in DLBCL. This study enhances our understanding of CSCs and identifies potential therapeutic targets for refractory or recurrent DLBCL patients.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zheng
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Gaohui Yang
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Pan
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanni Xie
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyu Chen
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinwei Tuo
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinxia Su
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuyi Ou
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongrong Liu
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Targeting UHRF1-SAP30-MXD4 axis for leukemia initiating cell eradication in myeloid leukemia. Cell Res 2022; 32:1105-1123. [PMID: 36302855 PMCID: PMC9715639 DOI: 10.1038/s41422-022-00735-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023] Open
Abstract
Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.
Collapse
|
6
|
Zhang Y, Liang C, Wu X, Pei J, Guo X, Chu M, Ding X, Bao P, Kalwar Q, Yan P. Integrated Study of Transcriptome-wide m 6A Methylome Reveals Novel Insights Into the Character and Function of m 6A Methylation During Yak Adipocyte Differentiation. Front Cell Dev Biol 2021; 9:689067. [PMID: 34926439 PMCID: PMC8678508 DOI: 10.3389/fcell.2021.689067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Yak (Bos grunniens) is considered an iconic symbol of Tibet and high altitude, but they suffer from malnutrition during the cold season that challenges the metabolism of energy. Adipocytes perform a crucial role in maintaining the energy balance, and adipocyte differentiation is a complex process involving multiple changes in the expression of genes. N 6-methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation as the most widespread mRNA modification of the higher eukaryotes. However, currently there is no research existing on the m6A transcriptome-wide map of bovine animals and their potential biological functions in adipocyte differentiation. Therefore, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to determine the distinctions in m6A methylation and gene expression during yak adipocyte differentiation. In yak adipocyte and preadipocyte the content of m6A and m6A-associated enzymes was substantially different. In the two groups, a total of 14,710 m6A peaks and 13,388 m6A peaks were identified. For the most part, m6A peaks were enriched in stop codons, 3'-untranslated regions, and coding regions with consensus motifs of GGACU. The functional enrichment exploration displayed that differentially methylated genes participated in some of the pathways associated with adipogenic metabolism, and several candidate genes (KLF9, FOXO1, ZNF395, and UHRF1) were involved in these pathways. In addition to that, there was a positive association between m6A abundance and levels of gene expression, which displayed that m6A may play a vital role in modulating gene expression during yak adipocyte differentiation. Further, in the adipocyte group, several methylation gene protein expression levels were significantly higher than in preadipocytes. In short, it can be concluded that the current study provides a comprehensive explanation of the m6A features in the yak transcriptome, offering in-depth insights into m6A topology and associated molecular mechanisms underlying bovine adipocyte differentiation, which might be helpful for further understanding its mechanisms.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Duan B, Fu D, Zhang C, Ding P, Dong X, Xia B. Selective Nonmethylated CpG DNA Recognition Mechanism of Cysteine Clamp Domains. J Am Chem Soc 2021; 143:7688-7697. [PMID: 33983734 DOI: 10.1021/jacs.1c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Methylation of DNA at CpG sites is a major mark for epigenetic regulation, but how transcription factors are influenced by CpG methylation is not well understood. Here, we report the molecular mechanisms of how the TCF (T-cell factor) and GEF (glucose transporter 4 enhancer factor) families of proteins selectively target unmethylated DNA sequences with a C-clamp type zinc finger domain. The structure of the C-clamp domain from human GEF family protein HDBP1 (C-clampHDBP1) in complex with DNA was determined using NMR spectroscopy, which adopts a unique zinc finger fold and selectively binds RCCGG (R = A/G) DNA sequences with an "Arg···Trp-Lys-Lys" DNA recognition motif inserted in the major groove. The CpG base pairs are central to the binding due to multiple hydrogen bonds formed with the backbone carbonyl groups of Trp378 and Lys379, as well as the side chain ε-amino groups of Lys379 and Lys380 from C-clampHDBP1. Consequently, methylation of the CpG dinucleotide almost abolishes the binding. Homology modeling reveals that the C-clamp domain from human TCF1E (C-clampTCF1E) binds DNA through essentially the same mechanism, with a similar "Arg···Arg-Lys-Lys" DNA recognition motif. The substitution of tryptophan by arginine makes C-clampHDBP1 prefer RCCGC DNA sequences. The two signature DNA recognition motifs are invariant in the GEF and TCF families of proteins, respectively, from fly to human. The recognition of the CpG dinucleotide through two consecutive backbone carbonyl groups is the same as that of the CXXC type unmethylated CpG DNA binding domains, suggesting a common mechanism shared by unmethylated CpG binding proteins.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dihong Fu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhi Dong
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Sun G, Zhou H, Chen K, Zeng J, Zhang Y, Yan L, Yao W, Hu J, Wang T, Xing J, Xiao K, Wu L, Ye Z, Xu H. HnRNP A1 - mediated alternative splicing of CCDC50 contributes to cancer progression of clear cell renal cell carcinoma via ZNF395. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:116. [PMID: 32560659 PMCID: PMC7304168 DOI: 10.1186/s13046-020-01606-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive. METHODS Bioinformatic algorithm was utilized to identify significant exon skipping events in ccRCC via exon sequencing data from The Cancer Genome Atlas. Semi-quantitative real-time polymerase chain reaction and western blot were used to validate the aberrant expression of different transcripts in renal cancer tissues, cell lines and corresponding noncancerous controls. Short hairpin RNA targeting CCDC50 and overexpressing plasmids for each transcript were introduced into ccRCC cell lines, followed by a series of in vitro and in vivo functional experiments. Moreover, a panel of splicing factors were identified and their roles on splicing regulation of CCDC50 precursor mRNA (pre-mRNA) were studied. Furthermore, RNAseq data were analyzed to elucidate downstream molecules of CCDC50. Two-way analysis of variance and unpaired Student t test were used in statistical analysis. RESULTS Pre-mRNA of CCDC50 generated two transcripts, full-length transcript (CCDC50-FL) and truncated transcript (CCDC50-S) with exon 6 skipped. CCDC50-S was overexpressed in ccRCC tissues and cell lines compared to noncancerous counterparts, but CCDC50-FL was only detected in noncancerous tissues and normal renal epithelial cells. Higher percent spliced-in index was associated with better survival in ccRCC patients. In vitro and in vivo functional experiments indicated that CCDC50-S transcript promoted the proliferation, migration, invasion and tumorigenesis of ccRCC, while CCDC50-FL exerted opposite tumor suppressive functions. Besides, we identified that heterogeneous nuclear ribonucleoprotein A1 (HnRNP A1) could promote the skipping of exon 6, which resulted in higher portion of CCDC50-S and oncogenic transformation. Moreover, zinc finger protein 395 (ZNF395) was identified as a downstream protein of CCDC50-S, and the interaction initiated oncogenic pathways which were involved in ccRCC progression. CONCLUSIONS Aberrant alternative splicing of CCDC50 is regulated by HnRNP A1 in ccRCC. This splicing event contributes to cancer progression through the downstream pathway involving ZNF395.
Collapse
Affiliation(s)
- Guoliang Sun
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Hui Zhou
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Ke Chen
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Jin Zeng
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Yangjun Zhang
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Libin Yan
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Weimin Yao
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Junhui Hu
- Hubei Institute of Urology, Wuhan, 430030 P.R. China ,grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Tao Wang
- grid.412625.6Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 P.R. China
| | - Jinchun Xing
- grid.412625.6Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 P.R. China
| | - Kefeng Xiao
- Department of Urology, The People’s Hospital of Shenzhen City, Shenzhen, 518000 P.R. China
| | - Lily Wu
- grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Zhangqun Ye
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China ,Hubei Institute of Urology, Wuhan, 430030 P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China. .,Hubei Institute of Urology, Wuhan, 430030, P.R. China.
| |
Collapse
|
9
|
Erdenee S, Li J, Kang Z, Xu H, Zang R, Cao X, Yang J, Cai Y, Lan X. Sheep zinc finger proteins 395 (ZNF395): insertion/deletion variations, associations with growth traits, and mRNA expression. Anim Biotechnol 2019; 31:237-244. [DOI: 10.1080/10495398.2019.1585865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sarantsetseg Erdenee
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Xu
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rongxin Zang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xin Cao
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jutian Yang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yong Cai
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Snezhkina AV, Nyushko KM, Zaretsky AR, Shagin DA, Sadritdinova AF, Fedorova MS, Guvatova ZG, Abramov IS, Pudova EA, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Transcription Factor SAP30 Is Involved in the Activation of NETO2 Gene Expression in Clear Cell Renal Cell Carcinoma. Mol Biol 2018. [DOI: 10.1134/s0026893318020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, Huang D, Xing M, Chan YS, Qu JZ, Tay ST, Wijaya G, Lam YN, Hong JH, Lee-Lim AP, Guan P, Ng MSW, He CZ, Lin JS, Nandi T, Qamra A, Xu C, Myint SS, Davies JOJ, Goh JY, Loh G, Tan BC, Rozen SG, Yu Q, Tan IBH, Cheng CWS, Li S, Chang KTE, Tan PH, Silver DL, Lezhava A, Steger G, Hughes JR, Teh BT, Tan P. VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discov 2017; 7:1284-1305. [DOI: 10.1158/2159-8290.cd-17-0375] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
12
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
13
|
Laitaoja M, Tossavainen H, Pihlajamaa T, Valjakka J, Viiri K, Lohi O, Permi P, Jänis J. Redox-dependent disulfide bond formation in SAP30L corepressor protein: Implications for structure and function. Protein Sci 2015; 25:572-86. [PMID: 26609676 DOI: 10.1002/pro.2849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/14/2015] [Indexed: 11/08/2022]
Abstract
Sin3A-associated protein 30-like (SAP30L) is one of the key proteins in a multi-subunit protein complex involved in transcriptional regulation via histone deacetylation. SAP30L, together with a highly homologous SAP30 as well as other SAP proteins (i.e., SAP25, SAP45, SAP130, and SAP180), is an essential component of the Sin3A corepressor complex, although its actual role has remained elusive. SAP30L is thought to function as an important stabilizing and bridging molecule in the complex and to mediate its interactions with other corepressors. SAP30L has been previously shown to contain an N-terminal Cys3 His type zinc finger (ZnF) motif, which is responsible for the key protein-protein, protein-DNA, and protein-lipid interactions. By using high-resolution mass spectrometry, we studied a redox-dependent disulfide bond formation in SAP30L ZnF as a regulatory mechanism for its structure and function. We showed that upon oxidative stress SAP30L undergoes the formation of two specific disulfide bonds, a vicinal Cys29-Cys30 and Cys38-Cys74, with a concomitant release of the coordinated zinc ion. The oxidized protein was shown to remain folded in solution and to bind signaling phospholipids. We also determined a solution NMR structure for SAP30L ZnF that showed an overall fold similar to that of SAP30, determined earlier. The NMR titration experiments with lipids and DNA showed that the binding is mediated by the C-terminal tail as well as both α-helices of SAP30L ZnF. The implications of these results for the structure and function of SAP30L are discussed.
Collapse
Affiliation(s)
- Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | | | - Tero Pihlajamaa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Keijo Viiri
- Center for Child Health Research and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Olli Lohi
- Center for Child Health Research and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Perttu Permi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
14
|
The Transcription Factor ZNF395 Is Required for the Maximal Hypoxic Induction of Proinflammatory Cytokines in U87-MG Cells. Mediators Inflamm 2015; 2015:804264. [PMID: 26229239 PMCID: PMC4502306 DOI: 10.1155/2015/804264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia activates the expression of proangiogenic and survival promoting factors as well as proinflammatory cytokines that support tissue inflammation. Hypoxia and inflammation are associated with tumor progression. The identification of the factors participating in the hypoxia associated inflammation is essential to develop strategies to control tumor hypoxia. The transcription factor ZNF395 was found to be overexpressed in various tumors including glioblastomas particularly in the network of a hypoxic response pointing to a functional role of ZNF395. On the other hand, ZNF395 was suggested to have tumor suppressor activities which may rely on its repression of proinflammatory factors. To address these conflictive observations, we investigated the role of ZNF395 in the expression of proinflammatory cytokines in the astrocytoma cell line U87-MG under hypoxia. We show that ZNF395 is a target gene of the hypoxia inducible factor HIF-1α. By gene expression analysis, RT-PCR and ELISA, we demonstrated that the siRNA-mediated suppression of ZNF395 impairs the hypoxic induction of IL-1β, IL-6, IL-8, and LIF in U87-MG cells. At ambient oxygen concentrations, ZNF395 had no enhancing effect, indicating that this transcriptional activation by ZNF395 is restricted to hypoxic conditions. Our results suggest that ZNF395 contributes to hypoxia associated inflammation by superactivating proinflammatory cytokines.
Collapse
|
15
|
Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J Pathol 2015; 235:527-38. [PMID: 25604863 DOI: 10.1002/path.4496] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ian J Groves
- University of Cambridge, Department of Pathology, UK
| | | |
Collapse
|
16
|
Structure-function analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin signaling. PLoS One 2014; 9:e86180. [PMID: 24465946 PMCID: PMC3896468 DOI: 10.1371/journal.pone.0086180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/05/2013] [Indexed: 02/03/2023] Open
Abstract
The evolutionarily conserved Wnt/ß-catenin (Wnt/ß-cat) pathway plays an important role in animal development in metazoans. Many Wnt targets are regulated by members of the TCF/LEF1 (TCF) family of transcription factors. All TCFs contain a High Mobility Group (HMG) domain that bind specific DNA sequences. Invertebrate TCFs and some vertebrate TCF isoforms also contain another domain, called the C-clamp, which allows TCFs to recognize an additional DNA motif known as the Helper site. While the C-clamp has been shown to be important for regulating several Wnt reporter genes in cell culture, its physiological role in regulating Wnt targets is less clear. In addition, little is known about this domain, except that two of the four conserved cysteines are functionally important. Here, we carried out a systematic mutagenesis and functional analysis of the C-clamp from the Drosophila TCF/Pangolin (TCF/Pan) protein. We found that the C-clamp is a zinc-binding domain that is sufficient for binding to the Helper site. In addition to this DNA-binding activity, the C-clamp also inhibits the HMG domain from binding its cognate DNA site. Point mutations were identified that specifically affected DNA-binding or reduced the inhibitory effect. These mutants were characterized in TCF/Pan rescue assays. The specific DNA-binding activity of the C-clamp was essential for TCF/Pan function in cell culture and in patterning the embryonic epidermis of Drosophila, demonstrating the importance of this C-clamp activity in regulating Wnt target gene expression. In contrast, the inhibitory mutation had a subtle effect in cell culture and no effect on TCF/Pan activity in embryos. These results provide important information about the functional domains of the C-clamp, and highlight its importance for Wnt/ß-cat signaling in Drosophila.
Collapse
|
17
|
Jordanovski D, Herwartz C, Pawlowski A, Taute S, Frommolt P, Steger G. The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer. PLoS One 2013; 8:e74911. [PMID: 24086395 PMCID: PMC3781154 DOI: 10.1371/journal.pone.0074911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/07/2013] [Indexed: 02/06/2023] Open
Abstract
Activation of the hypoxia inducible transcription factor HIF and the NF-ĸB pathway promotes inflammation-mediated tumor progression. The cellular transcription factor ZNF395 has repeatedly been found overexpressed in various human cancers, particularly in response to hypoxia, implying a functional relevance. To understand the biological activity of ZNF395, we identified target genes of ZNF395 through a genome-wide expression screen. Induced ZNF395 expression led to the upregulation of genes known to play a role in cancer as well as a subset of interferon (IFN)-stimulated genes (ISG) involved in antiviral responses such as IFIT1/ISG56, IFI44 and IFI16. In cells that lack ZNF395, the IFN-α-mediated stimulation of these factors was impaired, demonstrating that ZNF395 is required for the full induction of these antiviral genes. Transient transfections revealed that ZNF395-mediated activation of the IFIT1/ISG56 promoter depends on the two IFN-stimulated response elements within the promoter and on the DNA-binding domain of ZNF395, a so-called C-clamp. We also show that IĸBα kinase (IKK)-signaling is necessary to allow ZNF395 to activate transcription and simultaneously enhances its proteolytic degradation. Thus, ZNF395 becomes activated at the level of protein modification by IKK. Moreover, we confirm that the expression of ZNF395 is induced by hypoxia. Our results characterize ZNF395 as a novel factor that contributes to the maximal stimulation of a subset of ISGs. This transcriptional activity depends on IKK signaling further supporting a role of ZNF395 in the innate immune response. Given these results it is possible that under hypoxic conditions, elevated levels of ZNF395 may support inflammation and cancer progression by activating the target genes involved in the innate immune response and cancer.
Collapse
Affiliation(s)
| | | | - Anna Pawlowski
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Stefanie Taute
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Core Facility, CECAD Cologne, Cologne, Germany
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gertrud Steger
- Institute of Virology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
18
|
Hasegawa R, Tomaru Y, de Hoon M, Suzuki H, Hayashizaki Y, Shin JW. Identification of ZNF395 as a novel modulator of adipogenesis. Exp Cell Res 2012; 319:68-76. [PMID: 23142027 DOI: 10.1016/j.yexcr.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/01/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
Adipogenesis is the process of cell differentiation by which mesenchymal stem cells (MSC) become adipocytes. Investigating the transcriptional regulatory process during adipogenesis may provide strategies to prevent obesity and other metabolic disorders. In recent years, numerous zinc finger proteins (ZFPs) have been implicated in regulating differentiation and cell fate determination. To investigate the regulatory role of ZFPs involved in adipogenesis, we performed genome-wide microarray expression profiling of an adipogenesis time series. Particularly focusing on the transiently responsive ZFPs, we identified and characterized the functional role of ZNF395 in adipogenesis. A systematic ablation of the ZNF395 transcript during adipogenesis revealed 40% reduction of adipocytes when compared to control. Furthermore, the number of adipocytes as well as the expression of key adipocyte markers were greatly induced when MSC were co-transduced with ZNF395 and PPARG2. To further elucidate the functional role of ZNF395 during adipogenesis, we attempted to trans-differentiate human dermal fibroblasts with PPARG2. The test remarkably revealed that ZNF395 in conjunction with PPARG2 greatly induced adipogenesis from dermal fibroblasts when compared to PPARG2 alone. These loss and gain of function experiments firmly establish that ZNF395 coordinate the transcriptional regulatory pathway with PPARG2, which may be necessary for the genesis of adipocytes.
Collapse
Affiliation(s)
- Ryota Hasegawa
- Omics Science Center (OSC), RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Xie T, He Y, Korkeamaki H, Zhang Y, Imhoff R, Lohi O, Radhakrishnan I. Structure of the 30-kDa Sin3-associated protein (SAP30) in complex with the mammalian Sin3A corepressor and its role in nucleic acid binding. J Biol Chem 2011; 286:27814-24. [PMID: 21676866 PMCID: PMC3149371 DOI: 10.1074/jbc.m111.252494] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ∼2-megadalton evolutionarily conserved histone deacetylase-associated Rpd3L/Sin3L complex plays critical roles in altering the histone code and repressing transcription of a broad range of genes involved in many aspects of cellular physiology. Targeting of this complex to specific regions of the genome is presumed to rely on interactions involving one or more of at least 10 distinct subunits in the complex. Here we describe the solution structure of the complex formed by the interacting domains of two constitutively associated subunits, mSin3A and SAP30. The mSin3A paired amphipathic helix 3 (PAH3) domain in the complex adopts the left-handed four-helix bundle structure characteristic of PAH domains. The SAP30 Sin3 interaction domain (SID) binds to PAH3 via a tripartite structural motif, including a C-terminal helix that targets the canonical PAH hydrophobic cleft while two other helices and an N-terminal extension target a discrete surface formed largely by the PAH3 α2, α3, and α3' helices. The protein-protein interface is extensive (∼1400 Å(2)), accounting for the high affinity of the interaction and the constitutive association of the SAP30 subunit with the Rpd3L/Sin3L complex. We further show using NMR that the mSin3A PAH3-SAP30 SID complex can bind to nucleic acids, hinting at a role for a nucleolar localization sequence in the SID αA helix in targeting the Rpd3L/Sin3L complex for silencing ribosomal RNA genes.
Collapse
Affiliation(s)
- Tao Xie
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Yuan He
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Hanna Korkeamaki
- the Pediatric Research Center, University of Tampere Medical School and Tampere University Hospital, 33520 Tampere, Finland
| | - Yongbo Zhang
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Rebecca Imhoff
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Olli Lohi
- the Pediatric Research Center, University of Tampere Medical School and Tampere University Hospital, 33520 Tampere, Finland, To whom correspondence may be addressed. E-mail:
| | - Ishwar Radhakrishnan
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and , To whom correspondence may be addressed. E-mail:
| |
Collapse
|
20
|
Hertoghs KML, Moerland PD, van Stijn A, Remmerswaal EBM, Yong SL, van de Berg PJEJ, van Ham SM, Baas F, ten Berge IJM, van Lier RAW. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J Clin Invest 2010; 120:4077-90. [PMID: 20921622 DOI: 10.1172/jci42758] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/18/2010] [Indexed: 12/31/2022] Open
Abstract
CD8+ T cells play a critical role in the immune response to viral pathogens. Persistent human cytomegalovirus (HCMV) infection results in a strong increase in the number of virus-specific, quiescent effector-type CD8+ T cells with constitutive cytolytic activity, but the molecular pathways involved in the induction and maintenance of these cells are unknown. We show here that HCMV infection induced acute and lasting changes in the transcriptomes of virus-reactive T cells collected from HCMV-seropositive patients at distinct stages of infection. Enhanced cell cycle and metabolic activity was restricted to the acute phase of the response, but at all stages, HCMV-specific CD8+ T cells expressed the Th1-associated transcription factors T-bet (TBX21) and eomesodermin (EOMES), in parallel with continuous expression of IFNG mRNA and IFN-γ-regulated genes. The cytolytic proteins granzyme B and perforin as well as the fractalkine-binding chemokine receptor CX3CR1 were found in virus-reactive cells throughout the response. During HCMV latency, virus-specific CD8+ T cells lacked the typical features of exhausted cells found in other chronic infections. Persistent effector cell traits together with the permanent changes in chemokine receptor usage of virus-specific, nonexhausted, long-lived CD8+ T cells may be crucial to maintain lifelong protection from HCMV reactivation.
Collapse
Affiliation(s)
- Kirsten M L Hertoghs
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Grzenda A, Lomberk G, Zhang JS, Urrutia R. Sin3: master scaffold and transcriptional corepressor. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:443-50. [PMID: 19505602 PMCID: PMC3686104 DOI: 10.1016/j.bbagrm.2009.05.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 11/17/2022]
Abstract
Sin3 was isolated over two decades ago as a negative regulator of transcription in budding yeast. Subsequent research has established the protein as a master transcriptional scaffold and corepressor capable of transcriptional silencing via associated histone deacetylases (HDACs). The core Sin3-HDAC complex interacts with a wide variety of repressors and corepressors, providing flexibility and expanded specificity in modulating chromatin structure and transcription. As a result, the Sin3/HDAC complex is involved in an array of biological and cellular processes, including cell cycle progression, genomic stability, embryonic development, and homeostasis. Abnormal recruitment of this complex or alteration of its enzymatic activity has been implicated in neoplastic transformation.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gwen Lomberk
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Raul Urrutia
- Laboratory of Chromatin Dynamics and Epigenetics, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|