1
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:2485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
2
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Yang C, Feng H, Dai C. Development and validation of an immune‐related prognosis signature associated with hypoxia and ferroptosis in hepatocellular carcinoma. Cancer Med 2022; 11:2329-2341. [PMID: 35092175 PMCID: PMC9160815 DOI: 10.1002/cam4.4556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia and ferroptosis are crucial in the occurrence and development of hepatocellular carcinoma (HCC), and they both affect the immune status of the tumor microenvironment. Previous studies have also shown a link between hypoxia and ferroptosis. Patients and methods In all, 814 HCC cases from The Cancer Genome Atlas and Gene Expression Omnibus databases were used as the discovery cohort, and 230 HCC cases from the International Cancer Genome Consortium database were used as the validation cohort. Hypoxia subtypes and ferroptosis subtypes were identified by consensus cluster analysis according to 174 hypoxia‐related genes and 193 ferroptosis‐related genes. The prognostic signature was constructed using the Cox and LASSO regression analyses, and two risk groups were identified. A comprehensive analysis of the clinical and immune characteristics between the two risk groups was further performed. Results Two hypoxia subtypes and two ferroptosis subtypes were distinguished and verified; subsequently, a five‐gene prognostic signature was constructed and the risk score could be acquired by the following formula: risk score = 0.0604*Expression (CA9)−0.0714*Expression (ANXA10) + 0.1501*Expression (CDC20)−0.0853*Expression (CYP7A1) + 0.0530*Expression (SPP1). Compared with the low‐risk group, the high‐risk group had a worse prognosis. The high‐risk group also showed a higher level of immune infiltration than the low‐risk group, and immune checkpoints were generally upregulated in the high‐risk group. The antigen presentation ability of the low‐risk group was poor, which may be related to the immune escape mechanism. Drug sensitivity analysis indicated that the high‐ and low‐risk groups were sensitive to tyrosine kinase inhibitors and chemotherapeutic drugs, respectively. Conclusion The hypoxia‐, ferroptosis‐, and immune‐associated prognostic signature we constructed could stratify patients with HCC and guide precise treatment.
Collapse
Affiliation(s)
- Chun‐Bo Yang
- Department of General Surgery Shengjing Hospital of China Medical University Shenyang Liaoning China
| | - Han‐Xin Feng
- Department of General Surgery Shengjing Hospital of China Medical University Shenyang Liaoning China
| | - Chao‐Liu Dai
- Department of General Surgery Shengjing Hospital of China Medical University Shenyang Liaoning China
| |
Collapse
|
4
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Pu Z, Wu L, Guo Y, Li G, Xiang M, Liu L, Zhan H, Zhou X, Tan H. LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem 2019; 120:18172-18185. [PMID: 31144362 DOI: 10.1002/jcb.29123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Adenosine is a promising cytotoxic reagent for tumors, long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been indicated to play critical roles in tumorigenesis, ILF3 has been recognized as a MEG3-binding protein, however, the roles of adenosine and MEG3 on hepatoma are still ambiguous. To clarify the effects of MEG3 on the adenosine-induced cytotoxicity in hepatoma, MEG3 and ILF3 lentivirus were transduced into human hepatoma HepG2 cells to stimulate overexpression of MEG3 (OE MEG3) and overexpression of ILF3 (OE ILF3), furthermore, ILF3 small interfering RNA (siRNA) was also applied to downregulate the expression of ILF3. In this study, autophagy was markedly inhibited by low concentration of adenosine, which present by not only inhibited transformation from LC3-I to LC3-II and autophagosomes formation, but also the elevation of mTOR and reduction of beclin-1 proteins. Furthermore, low concentration of adenosine also exerted marked cytotoxicity representing induced cell apoptosis together with reductions of cell viability and migration, which were also markedly enhanced by OE MEG3. Novelly and excitingly, adenosine markedly stimulated MEG3 expression, OE MEG3 markedly decreased the ILF3 expression in HepG2 cells, and the adenosine-induced autophagy inhibition, together with the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were also boosted by OE MEG3. More interestingly, OE ILF3 increased autophagy, whereas downregulated ILF3, especially in the case of adenosine, led to marked autophagy inhibition by decreasing beclin-1. The present study demonstrates autophagy inhibition is involved in the adenosine-induced cytotoxicity in HepG2 cells, the cytotoxicity can be synergized by OE MEG3 via downregulated ILF3 to activate PI3K/Akt/mTOR and inactivate the beclin-1 signaling pathway. In conclusion, MEG3 and inhibition of autophagy might be potential targets for augmenting adenosine-induced cytotoxicity in hepatoma.
Collapse
Affiliation(s)
- Zejin Pu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Lingfei Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yitian Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoping Li
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengqi Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Lixuan Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haolian Zhan
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaotao Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|