1
|
Getsy PM, Coffee GA, Bates JN, Parran T, Hoffer L, Baby SM, MacFarlane PM, Knauss ZT, Damron DS, Hsieh YH, Bubier JA, Mueller D, Lewis SJ. The cell-permeant antioxidant D-thiol ester D-cysteine ethyl ester overcomes physical dependence to morphine in male Sprague Dawley rats. Front Pharmacol 2024; 15:1444574. [PMID: 39253377 PMCID: PMC11381264 DOI: 10.3389/fphar.2024.1444574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The ability of morphine to decrease cysteine transport into neurons by inhibition of excitatory amino acid transporter 3 (EAA3) may be a key molecular mechanism underlying the acquisition of physical and psychological dependence to morphine. This study examined whether co-administration of the cell-penetrant antioxidant D-thiol ester, D-cysteine ethyl ester (D-CYSee), with morphine, would diminish the development of physical dependence to morphine in male Sprague Dawley rats. Systemic administration of the opioid receptor antagonist, naloxone (NLX), elicited pronounced withdrawal signs (e.g., wet-dog shakes, jumps, rears, circling) in rats that received a subcutaneous depot of morphine (150 mg/kg, SC) for 36 h and continuous intravenous infusion of vehicle (20 μL/h, IV). The NLX-precipitated withdrawal signs were reduced in rats that received an infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) for the full 36 h. NLX elicited pronounced withdrawal signs in rats treated for 48 h with morphine (150 mg/kg, SC), plus continuous infusion of vehicle (20 μL/h, IV) that began at the 36 h timepoint of morphine treatment. The NLX-precipitated withdrawal signs were reduced in rats that received a 12 h infusion of D-CYSee, but not D-cysteine, (both at 20.8 μmol/kg/h, IV) that began at the 36 h timepoint of morphine treatment. These findings suggest that D-CYSee may attenuate the development of physical dependence to morphine and reverse established dependence to the opioid in male Sprague Dawley rats. Alternatively, D-CYSee may simply suppress the processes responsible for NLX-precipitated withdrawal. Nonetheless, D-CYSee and analogues may be novel therapeutics for the treatment of opioid use disorders.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Theodore Parran
- Center for Medical Education, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lee Hoffer
- Department of Anthropology, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Hakimizadeh E, Fatemi I, Hassanshahi J, Kaeidi A. Protective effects of pistachio hydroalcoholic extract on morphine-induced analgesic tolerance and dependence: investigating the impact of oxidative stress. Res Pharm Sci 2024; 19:366-375. [PMID: 39399729 PMCID: PMC11468171 DOI: 10.4103/rps.rps_85_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Chronic consumption of morphine (Mor) induces tolerance and dependence. This study aimed to survey the effects of pistachio extract (PX) on the induction and expression of Mor analgesic tolerance and physical dependency in mice. Experimental approach Animals were randomly separated into six groups (n = 7): control, DMSO, Mor (10 mg/kg), Mor + saline, Mor + PX (10 mg/kg), and Mor + PX (100 mg/kg). Mor was injected (10 mg/kg, twice a day, s.c.) for 7 days to induce tolerance. PX was administered (10 and 100 mg/kg, orally) during the examination period. On each day and 20 min after Mor administration, a tail-flick test was done to measure the analgesic response and induction of tolerance. On day 7, naloxone (5 mg/kg, s.c.) was injected into the Mor-dependent animals to evaluate dependence, and animals were monitored for 30 min for jumping. Also, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were assessed in the brain tissue. Findings/Results Our results indicated that co-administration of PX with Mor for 7 days diminished the induction of Mor tolerance. PX administration for 7 days alongside Mor reduced the frequency of withdrawal signs in naloxone-injected animals during dependence induction. Also, Mor increased the level of MDA and decreased the activities of SOD and GPx. Treatment with PX (100 mg/kg) restored all of the mentioned abnormalities. Conclusion and implications According to the results presented in this study, chronic administration of PX forbade the induction of Mor analgesic tolerance and dependency in mice.
Collapse
Affiliation(s)
- Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Jalal Hassanshahi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Nurten A, Gören MZ, Tekin N, Kaşkal M, Enginar N. Assessing effects of tamoxifen on tolerance, dependence, and glutamate and glutamine levels in frontal cortex and hippocampus in chronic morphine treatment. Behav Brain Res 2024; 463:114897. [PMID: 38331101 DOI: 10.1016/j.bbr.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.
Collapse
Affiliation(s)
- Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mert Kaşkal
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
Hauser KF, Ohene-Nyako M, Knapp PE. Accelerated brain aging with opioid misuse and HIV: New insights on the role of glially derived pro-inflammation mediators and neuronal chloride homeostasis. Curr Opin Neurobiol 2023; 78:102653. [PMID: 36584655 PMCID: PMC9933139 DOI: 10.1016/j.conb.2022.102653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) has become a national crisis and contributes to the spread of human immunodeficiency virus (HIV) infection. Emerging evidence and advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal that opioids per se can directly exacerbate the pathophysiology of neuroHIV. Despite substantial inroads, the impact of OUD on the severity, development, and prognosis of neuroHIV and HIV-associated neurocognitive disorders is not fully understood. In this review, we explore current evidence that OUD and neuroHIV interact to accelerate cognitive deficits and enhance the neurodegenerative changes typically seen with aging, through their effects on neuroinflammation. We suggest new thoughts on the processes that may underlie accelerated brain aging, including dysregulation of neuronal inhibition, and highlight findings suggesting that opioids, through actions at the μ-opioid receptor, interact with HIV in the central nervous system to promote unique structural and functional comorbid deficits not seen in either OUD or neuroHIV alone.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA.
| |
Collapse
|
5
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
7
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
8
|
Jin H, Sun YT, Guo GQ, Chen DL, Li YJ, Xiao GP, Li XN. Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats. Neurosci Lett 2017; 639:138-145. [DOI: 10.1016/j.neulet.2016.12.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022]
|
9
|
Lauro F, Giancotti LA, Ilari S, Dagostino C, Gliozzi M, Morabito C, Malafoglia V, Raffaeli W, Muraca M, Goffredo BM, Mollace V, Muscoli C. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice. PLoS One 2016; 11:e0156039. [PMID: 27227548 PMCID: PMC4881894 DOI: 10.1371/journal.pone.0156039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5–50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.
Collapse
Affiliation(s)
- Filomena Lauro
- San Raffaele Roma S.r.l., Roccelletta di Borgia, Catanzaro, Italy
| | | | - Sara Ilari
- San Raffaele Roma S.r.l., Roccelletta di Borgia, Catanzaro, Italy
| | - Concetta Dagostino
- Department of Surgical Sciences, Parma University, Parma, Italy
- YAP (Young Against Pain) Collaboration, Parma, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC_FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Chiara Morabito
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - William Raffaeli
- Institute for Research on Pain, ISAL-Foundation, Torre Pedrera (RN), Italy
| | - Maurizio Muraca
- Research Laboratories, Children’s Hospital “Bambino Gesù” Research Institute, Rome, Italy
| | - Bianca M. Goffredo
- Research Laboratories, Children’s Hospital “Bambino Gesù” Research Institute, Rome, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC_FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC_FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
10
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
11
|
Torkzadeh-Mahani S, Nasri S, Esmaeili-Mahani S. Ginger (zingiber officinale roscoe) prevents morphine-induced addictive behaviors in conditioned place preference test in rats. ADDICTION & HEALTH 2014; 6:65-72. [PMID: 25140219 PMCID: PMC4137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/22/2013] [Indexed: 11/13/2022]
Abstract
BACKGROUND Consumption of chronic morphine induces neuro-inflammation and addictive seeking behavior. Ginger (Zingiber Officinale Roscoe), a well-known spice plant, has been used traditionally in the treatment of a wide variety of ailments. It has been shown that ginger has anti-inflammatory, anti-oxidative and antinociceptive properties. However, its influences on morphine-induced addictive behaviors have not yet been clarified. The aim of the present study was the inhibition of exploratory behavior of morphine addiction in the conditioned place preference test in male desert rats through ginger. METHODS For conditioning to the morphine, the male Wistar rats received morphine (12 mg/kg intraperitoneally or i.p.) for 6 consecutive days and treatment groups were given different doses of ginger (25, 50 and 100 mg/kg intragastrically or i.g.) 30 min before morphine injection. For investigating addictive seeking behavior, conditioned place preference test (CPP) was used. FINDINGS Our result demonstrated that injection of morphine for 6 days induces dependency to morphine and creates addictive seeking behavior and ginger (100 mg/kg) could decrease time spend in conditioning box (addictive seeking behavior). CONCLUSION The data indicated that ginger extract has a potential anti-addictive property against chronic usage of morphine.
Collapse
Affiliation(s)
- Shima Torkzadeh-Mahani
- Associate Professor, Department of Biology, Payame Noor University, Tehran Branch, Tehran AND Laboratory of Molecular, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sima Nasri
- Associate Professor, Department of Biology, Payame Noor University, Tehran Branch, Tehran, Iran,Correspondence to: Sima Nasri PhD,
| | - Saeed Esmaeili-Mahani
- Associate Professor, Department of Biology, School of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
12
|
Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci 2013; 31:258-66. [PMID: 23499314 DOI: 10.1016/j.ijdevneu.2013.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/09/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022] Open
Abstract
Prolonged neonatal opioid exposure has been associated with: antinociceptive tolerance, long-term neurodevelopmental delay, cognitive, and motor impairment. Morphine has also been shown to induce apoptotic cell death in vitro studies, but its in vivo effect in developing rat brain is unknown. Thus, we hypothesized that prolongued morphine administration in neonatal rats in a model of antinociceptive tolerance and dependence is associated with increased neuroapoptosis. We analyzed neonatal rats from the following groups (1) naïve group (n=6); (2) control group (normal saline (NS), n=5), and (3) morphine group (n=8). Morphine sulfate or equal volume of NS was injected subcutaneously twice daily for 6½ days starting on postnatal day (PD) 1. Development of antinociceptive tolerance was previously confirmed by Hot Plate test on the 7th day. Evidence of neuronal and glial apoptosis was determined by cleaved caspase-3 immunofluorescence combined with specific markers. At PD7, morphine administration after 6½ days significantly increased the density of apoptotic cells in the cortex and amygdala, but not in the hippocampus, hypothalamus, or periaqueductal gray. Apoptotic cells exhibited morphology analogous to neurons. Irrespective of the treatment, only a very few individual microglia but not astrocytes were caspase-3 positive. In summary, repeated morphine administration in neonatal rats (PD1-7) is associated with increased supraspinal apoptosis in distinct anatomical regions known to be important for sensory (cortex) and emotional memory processing (amygdala). Brain regions important for learning (hippocampus), and autonomic and nociceptive processing (hypothalamus and periaqueductal gray) were not affected. Lack of widespread glial apoptosis or robust glial activation following repeated morphine administration suggests that glia might not be affected by chronic morphine at this early age. Future studies should investigate long-term behavioral sequelae of demonstrated enhanced apoptosis associated with prolonged morphine administration in a neonatal rat model.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Bader 3, Boston, MA 02115, USA.
| | | | | |
Collapse
|
13
|
Co-activation of μ- and δ-opioid receptors elicits tolerance to morphine-induced ventilatory depression via generation of peroxynitrite. Respir Physiol Neurobiol 2013; 186:255-64. [PMID: 23473921 DOI: 10.1016/j.resp.2013.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
We determined whether pretreatment with (1) the μ-/δ-opioid receptor (μ-/δ-OR) antagonist, naloxone, (2) the δ1,2-OR antagonist, naltrindole, or (3) the peroxynitrite scavenger, d-penicillamine, affects the development of tolerance to the ventilatory depressant effects of morphine in rats. The injection of morphine in vehicle-pretreated rats decreased minute ventilation predominantly via decreases in tidal volume. Pretreatment with naloxone blunted the responses to morphine whereas pretreatment with naltrindole or d-penicillamine did not. A second injection of morphine, given one day later, elicited markedly smaller responses in vehicle rats whereas it elicited pronounced ventilatory depression in rats that were pretreated with naloxone, naltrindole or d-penicillamine (prior to morphine) the day before. Moreover, the ventilatory responses elicited by subsequent exposure to a hypoxic-hypercapnic challenge were markedly depressed in naloxone- or d-penicillamine-pretreated rats compared to vehicle-pretreated rats. These findings suggest that activation of μ- and δ-ORs causes tolerance to the ventilatory depressant effects of morphine at least partly via the generation of peroxynitrite.
Collapse
|
14
|
Neonatal Morphine Administration Leads to Changes in Hippocampal BDNF Levels and Antioxidant Enzyme Activity in the Adult Life of Rats. Neurochem Res 2012; 38:494-503. [DOI: 10.1007/s11064-012-0941-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/10/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
15
|
Darvishzadeh-Mahani F, Esmaeili-Mahani S, Komeili G, Sheibani V, Zare L. Ginger (Zingiber officinale Roscoe) prevents the development of morphine analgesic tolerance and physical dependence in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:901-7. [PMID: 22472107 DOI: 10.1016/j.jep.2012.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/05/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger (Zingiber officinale Roscoe), a well-known spice plant, has been used traditionally in the treatment of a wide variety of ailments such as opiates withdrawal-induced disorders. However, its influences on opioid tolerance and dependence have not yet been clarified. MATERIALS AND METHODS Adult male Wistar rats were rendered tolerant to analgesic effect of morphine by injection of morphine (10 mg/kg, i.p.) twice daily for 8 days. To develop morphine dependence, rats given escalating doses of chronic morphine. To determine the effect of ginger on the development of morphine tolerance and dependence, different doses of ginger were administrated before morphine. The tail-flick and naloxone precipitation tests were used to assess the degree of tolerance and dependence, respectively. RESULTS Our results showed that chronic morphine-injected rats displayed tolerance to the analgesic effect of morphine as well as morphine dependence. Ginger (50 and 100 mg/kg) completely prevented the development of morphine tolerance. In addition, concomitant treatment of morphine with 100 and 150 mg/kg attenuated almost all of the naloxone-induced withdrawal sings which include weight lose, abdominal contraction, diarrhea, petosis, teeth chattering, and jumping. In addition, morphine-induced L-type calcium channel over-expression in spinal cord was reversed by 100 mg/kg ginger. CONCLUSION The data indicate that ginger extract has a potential anti-tolerant/anti-dependence property against chronic usage of morphine.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
16
|
Zare L, Esmaeili-Mahani S, Abbasnejad M, Rasoulian B, Sheibani V, Sahraei H, Kaeidi A. Oleuropein, Chief Constituent of Olive Leaf Extract, Prevents the Development of Morphine Antinociceptive Tolerance through Inhibition of Morphine-induced L-type Calcium Channel Overexpression. Phytother Res 2012; 26:1731-7. [DOI: 10.1002/ptr.4634] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 10/24/2011] [Accepted: 01/23/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Leila Zare
- Department of Biology, Faculty of Sciences; Shahid Bahonar University of Kerman; Kerman Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences; Shahid Bahonar University of Kerman; Kerman Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences; Shahid Bahonar University of Kerman; Kerman Iran
| | - Bahram Rasoulian
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khoramabad Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC); Kerman University of Medical Sciences; Kerman Iran
| | - Hedayat Sahraei
- Neuroscience Research Center; Baqiyatallah University of Medical Sciences; Iran
| | - Ayat Kaeidi
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khoramabad Iran
| |
Collapse
|
17
|
Rausaria S, Ghaffari MME, Kamadulski A, Rodgers K, Bryant L, Chen Z, Doyle T, Shaw MJ, Salvemini D, Neumann WL. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J Med Chem 2011; 54:8658-69. [PMID: 22082008 DOI: 10.1021/jm201233r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redox-active metalloporphyrins represent the most well-characterized class of catalysts capable of attenuating oxidative stress in vivo through the direct interception and decomposition of superoxide and peroxynitrite. While many interesting pharmacological probes have emerged from these studies, few catalysts have been developed with pharmaceutical properties in mind. Herein, we describe our efforts to identify new Mn(III)-porphyrin systems with enhanced membrane solubilizing properties. To this end, seven new Mn(III)-tetracyclohexenylporphyin (TCHP) analogues, 7, 10, 12, 15, and 16a-c, have been prepared in which the beta-fused cyclohexenyl rings provide a means to shield the charged metal center from the membrane during passive transport. Compounds 7, 15, and 16a-c have been shown to be orally active and potent analgesics in a model of carrageenan-induced thermal hyperalgesia. In addition, oral administration of compound 7 (10-100 mg/kg, n=5) has been shown to dose dependently reverse mechano-allodynia in the CCI model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, Illinois 62026, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51:951-66. [PMID: 21277369 PMCID: PMC3134634 DOI: 10.1016/j.freeradbiomed.2011.01.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 02/07/2023]
Abstract
Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
19
|
Rauf K, Subhan F, Abbas M, Badshah A, Ullah I, Ullah S. Effect of Bacopasides on acquisition and expression of morphine tolerance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:836-842. [PMID: 21377853 DOI: 10.1016/j.phymed.2011.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/04/2010] [Accepted: 01/23/2011] [Indexed: 05/30/2023]
Abstract
Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A(3), Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance.
Collapse
Affiliation(s)
- Khalid Rauf
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Li Y, Yan G, Bu Q, Lv L, Yang Y, Zhao J, Shao X, Deng Y, Zhu R, Zhao Y, Cen X. Protective Role of Taurine Against Morphine-Induced Neurotoxicity in C6 Cells via Inhibition of Oxidative Stress. Neurotox Res 2011; 20:334-42. [DOI: 10.1007/s12640-011-9247-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/15/2023]
|
21
|
Rausaria S, Kamadulski A, Rath NP, Bryant L, Chen Z, Salvemini D, Neumann WL. Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. J Am Chem Soc 2011; 133:4200-3. [PMID: 21370860 DOI: 10.1021/ja110427e] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a new series of biscyclohexano-fused Mn(III) complexes of bis(hydroxyphenyl)dipyrromethenes, 4a-c, as potent and orally active peroxynitrite scavengers. Complexes 4a-c are shown to reduce peroxynitrite through a two-electron mechanism, thereby forming the corresponding Mn(V)O species, which were characterized by UV, NMR, and LC-MS methods. Mn(III) complex 4b and its strained BODIPY analogue 9b were analyzed by X-ray crystallography. Finally, complex 4a is shown to be an orally active and potent analgesic in a model carrageenan-induced hyperalgesia known to be driven by the overproduction of peroxynitrite.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Salvemini D. Searching for new strategies for the pharmacological treatment of chronic pain. MISSOURI MEDICINE 2010; 107:262-264. [PMID: 20806838 PMCID: PMC6188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chronic pain is poorly managed and represents a huge unmet medical need that affects humans globally. The traditional multifaceted drug regimens for controlling chronic pain are marginally effective, produce highly variable results and display for the most parts unacceptable side effects. Research efforts over the last decade have identified peroxynitrite (PN) as a critical signaling molecule in the development of pain. Targeting PN is a novel evidence-based approach to develop novel therapeutics for managing chronic pain.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA.
| |
Collapse
|
23
|
Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2010; 42:75-94. [PMID: 20552384 DOI: 10.1007/s00726-010-0633-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/15/2010] [Indexed: 12/12/2022]
Abstract
Pain is a multidimensional perception and is modified at distinct regions of the neuroaxis. During enhanced pain, neuroplastic changes occur in the spinal and supraspinal nociceptive modulating centers and may result in a hypersensitive state termed central sensitization, which is thought to contribute to chronic pain states. Central sensitization culminates in hyperexcitability of dorsal horn nociceptive neurons resulting in increased nociceptive transmission and pain perception. This state is associated with enhanced nociceptive signaling, spinal glutamate-mediated N-methyl-D: -aspartate receptor activation, neuroimmune activation, nitroxidative stress, and supraspinal descending facilitation. The nitroxidative species considered for their role in nociception and central sensitization include nitric oxide (NO), superoxide ([Formula: see text]), and peroxynitrite (ONOO(-)). Nitroxidative species are implicated during persistent but not normal nociceptive processing. This review examines the role of nitroxidative species in pain through a discussion of their contributions to central sensitization and the underlying mechanisms. Future directions for nitroxidative pain research are also addressed. As more selective pharmacologic agents are developed to target nitroxidative species, the exact role of nitroxidative species in pain states will be better characterized and should offer promising alternatives to available pain management options.
Collapse
|
24
|
Targeting peroxynitrite driven nitroxidative stress with synzymes: A novel therapeutic approach in chronic pain management. Life Sci 2010; 86:604-14. [DOI: 10.1016/j.lfs.2009.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 01/09/2023]
|
25
|
Doyle T, Bryant L, Batinic-Haberle I, Little J, Cuzzocrea S, Masini E, Spasojevic I, Salvemini D. Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance. Neuroscience 2009; 164:702-10. [PMID: 19607887 DOI: 10.1016/j.neuroscience.2009.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023]
Abstract
Effective treatment of chronic pain with morphine is limited by decreases in the drug's analgesic action with chronic administration (antinociceptive tolerance). Because opioids are mainstays of pain management, restoring their efficacy has great clinical importance. We have recently reported that formation of peroxynitrite (ONOO(-), PN) in the dorsal horn of the spinal cord plays a critical role in the development of morphine antinociceptive tolerance and have further documented that nitration and enzymatic inactivation of mitochondrial superoxide dismutase (MnSOD) at that site provides a source for this nitroxidative species. We now report for the first time that antinociceptive tolerance in mice is also associated with the inactivation of MnSOD at supraspinal sites. Inactivation of MnSOD led to nitroxidative stress as evidenced by increased levels of products of oxidative DNA damage and activation of the nuclear factor poly (ADP-ribose) polymerase in whole brain homogenates. Co-administration of morphine with potent Mn porphyrin-based peroxynitrite scavengers, Mn(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+) and Mn(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP5+) (1) restored the enzymatic activity of MnSOD, (2) attenuated PN-derived nitroxidative stress, and (3) blocked the development of morphine-induced antinociceptive tolerance. The more lipophilic analogue, MnTnHex-2-PyP5+ was able to cross the blood-brain barrier at higher levels than its lipophylic counterpart MnTE-2-PyP5+ and was about 30-fold more efficacious. Collectively, these data suggest that PN-mediated enzymatic inactivation of supraspinal MnSOD provides a source of nitroxidative stress, which in turn contributes to central sensitization associated with the development of morphine antinociceptive tolerance. These results support our general contention that PN-targeted therapeutics may have potential as adjuncts to opiates in pain management.
Collapse
Affiliation(s)
- T Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Radi R. Peroxynitrite and reactive nitrogen species: The contribution of ABB in two decades of research. Arch Biochem Biophys 2009; 484:111-3. [DOI: 10.1016/j.abb.2009.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 12/19/2022]
|