1
|
Sastoque A, Triana S, Ehemann K, Suarez L, Restrepo S, Wösten H, de Cock H, Fernández-Niño M, González Barrios AF, Celis Ramírez AM. New Therapeutic Candidates for the Treatment of Malassezia pachydermatis -Associated Infections. Sci Rep 2020; 10:4860. [PMID: 32184419 PMCID: PMC7078309 DOI: 10.1038/s41598-020-61729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.
Collapse
Affiliation(s)
- Angie Sastoque
- Instituto de Biotecnología (IBUN), Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Sergio Triana
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lina Suarez
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Han Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
2
|
Sheng X, Gao J, Liu Y, Liu C. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase. J Mol Graph Model 2013; 44:17-25. [DOI: 10.1016/j.jmgm.2013.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/16/2022]
|
3
|
Kumar VP, West AH, Cook PF. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys 2012; 522:57-61. [PMID: 22521736 DOI: 10.1016/j.abb.2012.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/16/2022]
Abstract
Saccharopine dehydrogenase (SDH) catalyzes the NAD+ dependent oxidative deamination of saccharopine to form lysine (Lys) and α-ketoglutarate (α-kg). The active site of SDH has a number of conserved residues that are believed important to the overall reaction. Lysine 13, positioned near the active site base (K77), forms a hydrogen bond to E78 neutralizing it, and contributing to setting the pKa of the catalytic residues to near neutral pH. Glutamate 16 is within hydrogen bond distance to the Nε atom of R18, which has strong H-bonding interactions with the α-carboxylate and α-oxo groups of α-kg. Mutation of K13 to M and E16 to Q decreased kcat by about 15-fold, and primary and solvent deuterium kinetic isotope effects measured with the mutant enzymes indicate hydride transfer is rate limiting for the overall reaction. The pH-rate profiles for K13M exhibited no pH dependence, consistent with an increase in negative charge in the active site resulting in the perturbation in the pKas of catalytic groups. Elimination of E16 affects optimal positioning of R18, which is involved in binding and holding α-kg in the correct conformation for optimum catalysis. In agreement, a ΔΔG°' of 2.60 kcal/mol is estimated from the change in Kα-kg for replacing E16 with Q.
Collapse
Affiliation(s)
- Vidya Prasanna Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | | | | |
Collapse
|
4
|
Kumar VP, Thomas LM, Bobyk KD, Andi B, Cook PF, West AH. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry 2012; 51:857-66. [PMID: 22243403 DOI: 10.1021/bi201808u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a rate-limiting hydride transfer step. A viscosity effect of 0.8 was observed on V₂/K(Lys), indicating the solvent deuterium isotope effect resulted from stabilization of an enzyme form prior to hydride transfer. A small normal solvent isotope effect is observed on V, which decreases slightly when repeated with NADD, consistent with a contribution from product release to rate limitation. In addition, V₂/K(Lys)E(t) is pH-independent, which is consistent with the loss of an acid-base catalyst and perturbation of the pK(a) of the second catalytic group to a higher pH, likely a result of a change in the overall charge of the active site. The primary deuterium kinetic isotope effect for H96Q, measured in H₂O or D₂O, is within error equal to 1. A solvent deuterium isotope effect of 2.4 is observed with NADH or NADD as the dinucleotide substrate. Data suggest rate-limiting imine formation, consistent with the proposed role of H96 in protonating the leaving hydroxyl as the imine is formed. The pH-rate profile for V₂/K(Lys)E(t) exhibits the pK(a) for K77, perturbed to a value of ∼9, which must be unprotonated to accept a proton from the ε-amine of the substrate Lys so that it can act as a nucleophile. Overall, data are consistent with a role for K77 acting as the base that accepts a proton from the ε-amine of the substrate lysine prior to nucleophilic attack on the α-oxo group of α-ketoglutarate, and finally donating a proton to the imine nitrogen as it is reduced to give saccharopine. In addition, data indicate a role for H96 acting as a general acid-base catalyst in the formation of the imine between the ε-amine of lysine and the α-oxo group of α-ketoglutarate.
Collapse
Affiliation(s)
- Vidya Prasanna Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | | | | | | | | | | |
Collapse
|